A new solar volumetric reactor for CO2 reforming of CH4 was tested at the Solar Tower of the Weizmann Institute of Science. The reactor design was based on extensive previous experimental work with a volumetric receiver for heating air and simulation of volumetric reformer. The main parts of the reactor were a conical quartz window and a Porcupine absorber as the surface where chemical and thermal energy conversion took place. A specially developed ruthenium catalyst was used. The CO2 to CH4 ratio was about 1:1.2, and the total inlet flow rate was between 100 slpm and 235 slpm (slpm denotes standard liter per minute). The maximum absorber temperature was kept below 1450 K. The conversion of CH4 reached 85%. The total power absorbed was between 10.3 kW and 18.2 kW, of which the thermal power part was 2.3–4.5 kW and the stored chemical enrichment was 7.5–13.7 kW. The results indicate that this type of volumetric reactor can be used effectively for CO2 reforming of CH4, and further work aimed at improving the total efficiency of the system is in progress.

1.
Levitan
,
R.
,
Rosin
,
H.
, and
Levy
,
M.
, 1989, “
Chemical Reactions in Solar Furnace. Direct Heating of the Reactor in a Tubular Receiver
,”
Sol. Energy
0038-092X,
42
, pp.
267
272
.
2.
Levy
,
M.
,
Rosin
,
H.
, and
Levitan
,
R.
, 1989, “
Chemical Reactions in Solar Furnace by Direct Solar Irradiation of the Catalyst
,”
ASME J. Sol. Energy Eng.
0199-6231,
111
, pp.
96
97
.
3.
Anikeev
,
V. I.
,
Parmon
,
V. N.
,
Kirillov
,
V. A.
, and
Zamaraev
,
K. I.
, 1990, “
Theoretical and Experimental Studies of Solar Catalytic Power Plants Based on Reversible-Reactions With Participation of Methane and Synthesis Gas
,”
Int. J. Hydrogen Energy
0360-3199,
15
, pp.
275
286
.
4.
Levitan
,
R.
,
Levy
,
M.
,
Rosin
,
H.
, and
Rubin
,
R.
, 1991, “
Closed-Loop Operation of Solar Chemical Heat Pipe at the Weizmann Institute Solar Furnace
,”
Sol. Energy
0038-092X,
24
, pp.
467
477
.
5.
Buck
,
R.
,
Muir
,
J. F.
,
Hogan
,
R. E.
, and
Skocypec
,
R. D.
, 1991, “
Carbon Dioxide Reforming of Methane in a Solar Volumetric Receiver/Reactor: The Caesar Project
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
24
, pp.
449
463
.
6.
Levy
,
M.
,
Rubin
,
R.
,
Rosin
,
H.
, and
Levitan
,
R.
, 1992, “
Methane Reforming by Direct Solar Irradiation of the Catalyst
,”
Energy
0360-5442,
17
, pp.
749
756
.
7.
Rubin
,
R.
,
Levitan
,
R.
,
Rosin
,
H.
, and
Levy
,
M.
, 1992, “
Methanation of Synthesis Gas in a Solar Chemical Heat Pipe
,”
Energy
0360-5442,
17
, pp.
1109
1119
.
8.
Levy
,
M.
,
Levitan
,
R.
,
Rosin
,
H.
, and
Rubin
,
R.
, 1993, “
Solar Energy Storage via a Closed-Loop Chemical Heat Pipe
,”
Sol. Energy
0038-092X,
50
, pp.
179
189
.
9.
Spiewak
,
I.
,
Tyner
,
C. E.
, and
Langnickel
,
U.
, 1993, “
Applications of Solar Reforming Technology
,”
Sandia
, Report No. SAND93-1959.
10.
Muir
,
J. F.
,
Hogan
,
R. E.
, Jr.
,
Skocypec
,
R. D.
, and
Buck
,
R.
, 1994, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: I—Test and Analysis
,”
Sol. Energy
0038-092X,
52
(
6
), pp.
467
477
.
11.
Skocypec
,
R. D.
,
Hogan
,
R. E.
, Jr.
, and
Muir
,
J. F.
, 1994, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: II—Modeling and Analysis
,”
Sol. Energy
0038-092X,
52
(
6
), pp.
479
490
.
12.
Abele
,
M.
,
Wörner
,
A.
,
Brose
,
G.
,
Buck
,
R.
, and
Tamme
,
R.
, 1996, “
Test Results of a Receiver-Reactor for Solar Methane Reforming and Aspects of Further Applications of This Technology
,”
Proceedings of the Eighth International Symposium on Solar Thermal Concentrating Technologies
,
DLR
,
Köln, Germany
, Vol.
3
, pp.
1185
1204
.
13.
Anikeev
,
V. I.
,
Bobrin
,
A. S.
,
Ortner
,
J.
,
Schmidt
,
S.
,
Funken
,
K. H.
, and
Kuzin
,
N. A.
, 1998, “
Catalytic Thermochemical Reactor/Receiver for Solar Reforming of Natural Gas: Design and Performance
,”
Sol. Energy
0038-092X,
63
, pp.
97
104
.
14.
Berman
,
A.
,
Rakesh
,
K. K.
, and
Epstein
,
M.
, 2006, “
A New Catalyst System for High-Temperature Solar Reforming of Methane
,”
Energy Fuels
0887-0624,
20
(
2
), pp.
455
462
.
15.
Karni
,
J.
,
Kribus
,
A.
,
Rubin
,
R.
,
Doron
,
P.
,
Fiterman
,
A.
, and
Sagie
,
D.
, 1997, “
The DIAPR: A High-Pressure, High-Temperature Solar Receiver
,”
ASME J. Sol. Energy Eng.
0199-6231,
119
(
1
), pp.
74
78
.
16.
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Reuven
,
R.
,
Taragan
,
E.
,
Duchan
,
S.
, and
Karni
,
J.
, 2001, “
Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 bar and 1,200 °C
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
10
17
.
17.
Karni
,
J.
,
Kribus
,
A.
,
Rubin
,
R.
, and
Doron
,
P.
, 1998, “
The Porcupine: A Novel High-Flux Absorber for Volumetric Solar Receivers
,”
ASME J. Sol. Energy Eng.
0199-6231,
120
, pp.
85
95
.
18.
Rubin
,
R.
,
Karni
,
J.
, and
Yeheskel
,
J.
, 2004, “
Chemical Kinetics Simulation of High Temperature Hydrocarbons Reforming Using a Solar Reactor
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
(
3
), pp.
858
866
.
19.
Ben-Zvi
,
R.
, and
Karni
,
J.
, 2007, “
Simulation of a Volumetric Solar Reformer
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
(
2
), pp.
197
204
.
20.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1989, “
CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics
,”
Sandia National Laboratories
, Report No. SAND89-8009B.
You do not currently have access to this content.