Performance characteristics of an acetonitrile electrolyte based dye-sensitized solar cell were measured experimentally as functions of temperature (from 5 to 50 °C) and irradiance (from 500 to 1500 W m−2). The results indicated two thermal regimes of operation characterized by diffusion and recombination limitation. It was shown that in the diffusion dominated regime the photoconversion efficiency was not a strong function of temperature whereas it decreased significantly with increasing temperature in the recombination dominated regime. Also, it was shown that the recombination rate was not affected significantly by increase in irradiance resulting in an overall larger temperature dependence of cell performance at larger irradiances.
Issue Section:
Research Papers
References
1.
Grätzel
, M.
, 2009, “Recent Advances in Sensitized Mesoscopic Solar Cells
,” Acc. Chem. Res.
, 42
(11
), pp. 1788
–1798
.2.
Grimes
, C. A.
, Varghese
, O. K.
, and Ranjan
, S.
, 2008, Light, Water, Hydrogen
, Springer Science Business Media, LLC
, New York, NY
.3.
Grätzel
, M.
, 2001, “Photoelectrochemical Cells
,” Nature (London)
, 414
(6861
), pp. 338
–344
.4.
Nogueira
, A. F.
, 2004, “Polymers in Dye Sensitized Solar Cells: Overview and Perspectives
,” Coord. Chem. Rev.
, 248
(13–14
), pp. 1455
–1468
.5.
Lin
, L. Y.
, Lee
, C. P.
, Vittal
, R.
, and Ho
, K. C.
, 2010, “Selective Conditions for the Fabrication of a Flexible Dye-Sensitized Solar Cell With Ti/TiO2 Photoanode
,” J. Power Sources
, 195
(13
), pp. 4344
–4349
.6.
Chuangchote
, S.
, Sagawa
, T.
, and Yoshikawa
, S.
, 2008, “Efficient Dye-Sensitized Solar Cells Using Electrospun TiO2 Nanofibers as a Light Harvesting Layer
,” Appl. Phys. Lett.
, 93
(3
), p. 033310
.7.
Halme
, J.
, 2002, “Dye-sensitized Nanostructured and Organic Photovoltaic Cells: Technical Review and Preliminary Tests
,” Master of Science in Technology
, Helsinki University of Technology
, Helsinki, Finland
.8.
Grätzel
, M.
, 2003, “Dye-Sensitized Solar Cells
,” J. Photochem. Photobiol., C
, 4
(2
), pp. 145
–153
.9.
Goetzberger
, A.
, Hebling
, C.
, and Schock
, H. W.
, 2003, “Photovoltaic Materials, History, Status and Outlook
,” Mater. Sci. Eng R
, 40
(1
), pp. 1
–46
.10.
Noda
, S.
, Nagano
, K.
, Inoue
, E.
, Egi
, T.
, Nakashima
, T.
, Imawaka
, N.
, Kanayama
, M.
, Iwata
, S.
, Toshima
, K.
, Nakada
, K.
, and Yoshino
, K.
, 2009, “Development of Large Size Dye-Sensitized Solar Cell Modules With High Temperature Durability
,” Synth. Met.
, 159
(21–22
), pp. 2355
–2357
.11.
Sebastian
, P. J.
, Olea
, A.
, Campos
, J.
, Toledo
, J. A.
, and Gamboa
, S. A.
, 2004, “Temperature Dependence and the Oscillatory Behavior of the Opto-Electronic Properties of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell
,” Sol. Energy Mater. Sol. Cells
, 81
(3
), pp. 349
–361
.12.
Campbell
, W. M.
, Burrell
, A. K.
, Officer
, D. L.
, and Jolley
, K. W.
, 2004, “Porphyrins as Light Harvesters in the Dye-Sensitised TiO2 Solar Cell
,” Coord. Chem. Rev.
, 248
(13–14
), pp. 1363
–1379
.13.
Martinson
, A. B. F.
, Hamann
, T. W.
, Pellin
, M. J.
, and Hupp
, J. T.
, 2008, “New Architectures for Dye-Sensitized Solar Cells
,” Chem.- Eur. J.
, 14
(15
), pp. 4458
–4467
.14.
Haque
, S.
, Palomares
, E.
, Cho
, B. M.
, Green
, A. N. M.
, Hirata
, N.
, Klug
, D. R.
, and Durrant
, J. R.
, 2005, “Charge Separation Versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: The Minimization of Kinetic Redundancy
,” J. Am. Chem. Soc.
, 127
(10
), pp. 3456
–3462
.15.
Hamann
, T. W.
, Jensen
, R. A.
, Martinson
, A. B. F.
, Van Ryswyk
, H.
, and Hupp
, J. T.
, 2008, “Advancing Beyond Current Generation Dye-Sensitized Solar Cells
,” Energy Environ. Sci.
, 1
(1
), pp. 66
–78
.16.
Smestad
, G. P.
, and Gratzel
, M.
, 1998, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter
,” J. Chem. Educ.
, 75
(6
), pp. 752
–756
.17.
Fredin
, K.
, 2006, “Studies of Coupled Charge Transport in Dye-Sensitized Solar Cells Using a Numerical Simulation Tool
,” Sol. Energy Mater. Sol. Cells
, 90
(13
), pp. 1915
–1927
.18.
Peter
, L. M.
, and Wijayantha
, K. G. U.
, 2000, “Electron Transport and Back Reaction in Dye Sensitised Nanocrystalline Photovoltaic Cells
,” Electrochim. Acta
, 45
(28
), pp. 4543
–4551
.19.
Newman
, J. S.
, and Thomas-Alyea
, K. E.
, 2004, Electrochemical Systems
, 3rd ed., Wiley Interscience
, Hoboken, NJ
.20.
Nelson
, J.
, and Chandler
, R. E.
, 2004, “Random Walk Models of Charge Transfer and Transport in Dye Sensitized Systems
,” Coord. Chem. Rev.
, 248
(13–14
), pp. 1181
–1194
.21.
Hagfeldt
, A.
, and Grätzel
, M.
, 2000, “Molecular Photovoltaics
,” Acc. Chem. Res.
, 33
(5
), pp. 269
–277
.22.
Biswas
, A. M.
, Haque
, S. A.
, Lutz
, T.
, Montanarh
, I.
, Olson
, C.
, Willis
, R. L.
, Durrant
, J. R.
, and Nelson
, J.
, 2000, “Charge Recombination and Transport in Dye Sensitised TiO2 Photovoltaic Devices
,” Conference Record Of The Twenty-Eighth IEEE Photovoltaic Specialists Conference
, IEEE
, 345 E 47th ST, New York, NY
, pp. 796
–801
.23.
Kumar
, A.
, Santangelo
, P. G.
, and Lewis
, N. S.
, 1992, “Electrolysis of Water at SrTiO, Photoelectrodes: Distinguishing Between the Statistical and Stochastic Formalisms for Electron-Transfer Processes in Fuel-Forming Photoelectrochemical Systems
,” J. Phys. Chem.
, 96
(2
), pp. 834
–842
.24.
Nazeeruddin
, M. K.
, Kay
, A.
, Rodicio
, I.
, Humphry-Baker
, R.
, Miller
, E.
, Liska
, P.
, Vlachopoulos
, N.
, and Gratzel
, M.
, 1993, “Conversion of Light to Electricity by Cis-X2bis(2,2′-Bipyridyl-4,4′-Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X = CL−, BR−, I−, CN−, and SCN−) on Nanocrystalline TiO2 Electrodes
,” J. Am. Chem. Soc.
, 115
(4
), pp. 6382
–6390
.25.
Kusama
, H.
, Kurashige
, M.
, and Arakawa
, H.
, 2005, “Influence of Nitrogen-Containing Heterocyclic Additives in I-/I3 - Redox Electrolytic Solution on the Performance of Ru-dye-Sensitized Nanocrystalline TiO2 Solar Cell
,” J. Photochem. Photobiol. A
, 169
(2
), pp. 169
–176
.26.
Kopidakis
, N.
, Neale
, N. R.
, and Frank
, A. J.
, 2006, “Effect of an Adsorbent on Recombination and Band-Edge Movement in Dye-Sensitized TiO2 Solar Cells: Evidence for Surface Passivation
,” J. Phys. Chem. B
, 110
(25
), pp. 12485
–12489
.27.
Ofir
, A.
, Grinis
, L.
, and Zaban
, A.
, 2008, “Direct Measurement of the Recombination Losses via the Transparent Conductive Substrate in Dye Sensitized Solar Cells
,” J. Phys. Chem. C
, 112
(7
), pp. 2779
–2783
.28.
Berginc
, M.
, Krasovec
, U. O.
, Jankovec
, M.
, and Topic
, M.
, 2007, “The Effect of Temperature on the Performance of Dye-Sensitized Solar Cells Based on a Propyl-Methyl-Imidazolium Iodide Electrolyte
,” Sol. Energy Mater. Sol. Cells
, 91
(9
), pp. 821
–828
.29.
Berginc
, M.
, Krasovec
, U. O.
, Hocevar
, M.
, and Topic
, M.
, 2008, “Performance of Dye-Sensitized Solar Cells Based on Ionic Liquids: Effect of Temperature and Iodine Concentration
,” Thin Solid Films
, 516
(20
), pp. 7155
–7159
.30.
Kuang
, D. B.
, Wang
, P.
, Ito
, S.
, Zakeeruddin
, S. M.
, and Gratzel
, M.
, 2006, “Stable Mesoscopic Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte
,” J. Am. Chem. Soc.
, 128
(24
), pp. 7732
–7733
.31.
Krasovec
, U. O.
, Berginc
, M.
, Hocevar
, M.
, and Topic
, M.
, 2009, “Unique TiO2 Paste for High Efficiency Dye-Sensitized Solar Cells
,” Sol. Energy Mater. Sol. Cells
, 93
(3
), pp. 379
–381
.32.
Hauch
, A.
, 2001, “Diffusion in the Electrolyte and Charge-Transfer Reaction at the Platinum Electrode in Dye-Sensitized Solar Cells
,” Electrochim. Acta
, 46
(22
), pp. 3457
–3466
.33.
Suryanarayanan
, V.
, Lee
, K. M.
, Chen
, J. G.
, and Ho
, K. C.
, 2009, “High Performance Dye-Sensitized Solar Cells Containing 1-Methyl-3-Propyl Imidazolinium Iodide-Effect of Additives and Solvents
,” J. Electroanal. Chem.
, 633
(1
), pp. 146
–152
.34.
Huang
, S. Y.
, Schlichtho
, G.
, Nozik
, A. J.
, Gratzel
, M.
, and Frank
, A. J.
, 1997, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells
,” J. Phys. Chem. B
, 101
(14
), pp. 2576
–2582
.35.
Snaith
, H. J.
, Schmidt-Mende
, L.
, Gratzel
, M.
, and Chiesa
, M.
, 2006, “Light Intensity, Temperature, and Thickness Dependence of the Open-Circuit Voltage in Solid-State Dye-Sensitized Solar Cells
,” Phys. Rev. B
, 74
(4
), p. 045306
.36.
Ocakoglu
, K.
, Yakuphanoglu
, F.
, Durrant
, J. R.
, and Icli
, S.
, 2008, “The Effect of Temperature on the Charge Transport and Transient Absorption Properties of K27 Sensitized DSSC
,” Sol. Energy Mater. Sol. Cells
, 92
(9
), pp. 1047
–1053
.37.
Krauter
, S. C. W.
, 2006, Solar Electric Power Generation—Photovoltaic Energy Systems: Modeling of Optical and Thermal Performance, Electrical Yield, Energy Balance, Effect on Reduction of Greenhouse Gas Emissions
, Springer
, Berlin
.38.
Kron
, G.
, Egerter
, T.
, Werner
, J. H.
, and Rau
, U.
, 2003, “Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar Cells—Comparison of Electrolyte and Solid-State Devices
,” J. Phys. Chem. B
, 107
(15
), pp. 3556
–3564
.39.
Kron
, G.
, Egerter
, T.
, Nelles
, G.
, Yasuda
, A.
, Werner
, J. H.
, and Rau
, U.
, 2002, “Electrical Characterisation of Dye Sensitised Nanocrystalline TiO2 Solar Cells With Liquid Electrolyte and Solid-State Organic Hole Conductor
,” Thin Solid Films
, 403
, pp. 242
–246
.40.
Fischer
, A.
, Pettersson
, H.
, Hagfeldt
, A.
, Boschloo
, G.
, Kloo
, L.
, and Gorlov
, M.
, 2007, “Crystal Formation Involving 1-Methylbenzimidazole in Iodide/Triiodide Electrolytes for Dye-Sensitized Solar Cells
,” Sol. Energy Mater. Sol. Cells
, 91
(12
), pp. 1062
–1065
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.