A wake fast-calculation model is developed, which can calculate the wind speed distribution of wind farms accurately and efficiently under varying wind speed and wind direction. Based on the wake fast-calculation model, a wind farm optimal controlling model is established to optimize the axial induction factors of wind turbines solving by particle swarm optimization (PSO) algorithm. In this way, the overall wind farm power output can be maximized and the wake losses can be minimized. Horns Rev wind farm in Denmark is selected as the case study, and the calculation results show that the wind farm optimal control algorithm based on the wake fast-calculation model is effective.

References

1.
Schepers
,
J. G.
, and
van der Pijl
,
S. P.
,
2007
, “
Improved Modelling of Wake Aerodynamics and Assessment of New Farm Control Strategies
,”
J. Phys.: Conf. Ser.
,
75
(
1
), pp.
012039
012046
.
2.
Gebraad
,
P. M. O.
,
Teeuwisse
,
F. W.
,
van Wingerden
,
J. W.
,
Fleming
,
P. A.
,
Ruben
,
S. D.
,
Marden
,
J. R.
, and
Pao
,
L. Y.
,
2016
, “
Wind Plant Power Optimization Through Yaw Control Using a Parametric Model for Wake Effects-A CFD Simulation Study
,”
Wind Energy
,
19
(
1
), pp.
95
114
.
3.
Juelsgaard
,
M.
,
Schiøler
,
H.
, and
Leth
,
J.
,
2012
, “
Wind Farm Dispatch Control for Demand Tracking and Minimized Fatigue
,”
Power Syst. Power Plant Control
,
8
(
1
), pp.
381
386
.
4.
Jizhen
,
L.
,
Yu
,
L.
,
DeLiang
,
Z.
,
JiWei
,
L.
,
You
,
L.
, and
Yang
,
H.
,
2012
, “
Optimal Short-Term Load Dispatch Strategy in Wind Farm
,”
Sci. China: Technol. Sci.
,
55
(
4
), pp.
1140
1145
.
5.
Soleimanzadeh
,
M.
, and
Wisniewski
,
R.
,
2011
, “
Controller Design for a Wind Farm, Considering Both Power and Load Aspects
,”
Mechatronics
,
21
(4), pp.
720
727
.
6.
Soleimanzadeh
,
M.
,
Wisniewski
,
R.
, and
Johnson
,
K.
,
2013
, “
A Distributed Optimization Framework for Wind Farms
,”
J. Wind Eng. Ind. Aerodyn.
,
123
(
4
), pp.
88
98
.
7.
Marden
,
J. R.
,
Ruben
,
S. D.
, and
Pao
,
L. Y.
,
2013
, “
A Model-Free Approach to Wind Farm Control Using Game Theoretic Methods
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1207
1214
.
8.
Gebraad
,
P. M. O.
, and
van Wingerden
,
J. W.
,
2015
, “
Maximum Power-Point Tracking Control for Wind Farms
,”
Wind Energy
,
18
(
3
), pp.
429
447
.
9.
Behnood
,
A.
,
Gharavi
,
H.
,
Vahid
,
B.
, and
Riahy
,
G. H.
,
2014
, “
Optimal Output Power of Not Properly Designed Wind Farms, Considering Wake Effects
,”
Electr. Power Energy Syst.
,
63
(
12
), pp.
44
50
.
10.
Soleimanzadeh
,
M.
,
Wisniewski
,
R.
, and
Kanev
,
S.
,
2012
, “
An Optimization Framework for Load and Power Distribution in Wind Farms
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
(
8
), pp.
256
262
.
11.
Knudsen
,
T.
,
Bak
,
T.
, and
Svenstrup
,
M.
,
2015
, “
Survey of Wind Farm Control-Power and Fatigue Optimization
,”
Wind Energy
,
18
(
8
), pp.
1333
1351
.
12.
Douwe
,
J. R.
,
2007
, “
Validation of Wind Turbine Wake Models
,” M.S. thesis, Delft University of Technology, Delft, The Netherlands.
13.
VanLuvanee
,
D. R.
,
2006
, “
Investigation of Observed and Modeled Wake Effects at Horns Rev Using WindPRO
,” M.S. thesis, Technical University of Denmark, Kongens Lyngby, Denmark.
You do not currently have access to this content.