Thermal storage plays a major role in a wide variety of industrial, commercial, and residential applications when there is a mismatch between the offer and the claim of energy. In this paper, we study numerically the contribution of phase change materials (PCMs) for solar thermal energy storage (TES) in buildings. The studied configuration is a plane solar collector incorporating a PCM layer and coupled to a concrete slab (a roof of a building). The study is conducted for Casablanca (Morocco) meteorological conditions. Several simulations were performed to optimize the melting temperature and the PCM layer thickness. The results show that PCM imposes, on the roof, a temperature close to its melting temperature. The choice of a melting temperature Tmelt = 22 °C (the local indoor temperature Tc is fixed as Tc = 22 °C) limits the losses through the concrete slab, considerably. This last seems to be, nearly, adiabatic, in this case. Also, the energy released by PCM solidification, overnight, increases the outlet temperature of the coolant fluid to 35 °C and the useful flux to 80 W/m2, increasing the efficiency of the solar collector by night. The PCM functioned both as an energy storage material for the stabilization of the coolant fluid temperature and as an insulating material for the building.

References

1.
Castell
,
A.
,
Martorell
,
I.
,
Medrano
,
M.
,
Pérez
,
G.
, and
Cabeza
,
L. F.
,
2010
, “
Experimental Study of Using PCM in Brick Constructive Solutions for Passive Cooling
,”
Energy Build.
,
42
(
4
), pp.
534
540
.
2.
Cabeza
,
L. F.
,
Castell
,
A.
,
Barreneche
,
C.
,
de Garcia
,
A.
, and
Fernandez
,
A. I.
,
2011
, “
Materials Used as PCM in Thermal Energy Storage in Buildings: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1675
1695
.
3.
Yahay
,
N. A.
, and
Ahmad
,
H.
,
2011
, “
Numerical Investigation of Indoor Air Temperature With the Application of PCM Gypsum Board as Ceiling Panels in Buildings
,”
Procedia Eng.
,
20
, pp.
238
248
.
4.
Zwanzig
,
S. D.
,
Lian
,
Y.
, and
Brehob
,
E. G.
,
2013
, “
Numerical Simulation of Phase Change Material Composite Wallboard in a Multi-Layered Building Envelope
,”
Energy Convers. Manage.
,
69
, pp.
27
40
.
5.
Arce
,
P.
,
Castellón
,
C.
,
Castell
,
A.
, and
Cabeza
,
L. F.
,
2012
, “
Use of Microencapsulated PCM in Buildings and the Effect of Adding Awnings
,”
Energy Build.
,
44
, pp.
88
93
.
6.
Kurklu
,
A.
,
Ozmerzi
,
A.
, and
Bilgin
,
S.
,
2002
, “
Thermal Performance of a Water-Phase Change Material Solar Collector
,”
Renewable Energy
,
26
(
3
), pp.
391
399
.
7.
Mettawee
,
E. B. S.
, and
Assassa
,
G. M. R.
,
2006
, “
Experimental Study of a Compact PCM Solar Collector
,”
Energy
,
31
(
14
), pp.
2958
2968
.
8.
Qarnia
,
H. E.
,
2009
, “
Numerical Analysis of a Coupled Solar Collector Latent Heat Storage Unit Using Various Phase Change Materials for Heating the Water
,”
Energy Convers. Manage.
,
50
(
2
), pp.
247
254
.
9.
Padovan
,
R.
, and
Manzan
,
M.
,
2014
, “
Genetic Optimization of a PCM Enhanced Storage Tank for Solar Domestic Hot Water Systems
,”
Sol. Energy
,
103
, pp.
563
573
.
10.
Mahfuz
,
M. H.
,
Anisur
,
M. R.
,
Kibria
,
M. A.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2014
, “
Performance Investigation of Thermal Energy Storage System With Phase Change Material (PCM) for Solar Water Heating Application
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
132
139
.
11.
Alva
,
L. H.
,
González
,
J. E.
, and
Dukham
,
N.
,
2006
, “
Initial Analysis of PCM Integrated Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
128
(
2
), pp.
173
177
.
12.
Buker
,
M. S.
, and
Riffat
,
S. B.
,
2015
, “
Building Integrated Solar Thermal Collectors—A Review
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
327
346
.
13.
Lamnatou
,
Chr.
,
Mondol
,
J. D.
,
Chemisana
,
D.
, and
Maurer
,
C.
,
2015
, “
Modelling and Simulation of Building Integrated Solar Thermal Systems: Behaviour of the Coupled Building/System Configuration
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
178
191
.
14.
Maurer
,
C.
,
Cappel
,
C.
, and
Kuhn
,
T. E.
,
2015
, “
Simple Models for Building Integrated Solar Thermal Systems
,”
Energy Build.
,
103
, pp.
118
123
.
15.
Zhou
,
Z.
,
Zhang
,
Z.
,
Zuo
,
J.
,
Huang
,
K.
, and
Zhang
,
L.
,
2015
, “
Phase Change Materials for Solar Thermal Energy Storage in Residential Buildings in Cold Climate
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
692
703
.
16.
Heier
,
J.
,
Bales
,
C.
, and
Martin
,
V.
,
2015
, “
Combining Thermal Energy Storage With Buildings—A Review
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
1305
1325
.
17.
Ismail
,
K. A. R.
,
Quispe
,
O. C.
, and
Henriquez
,
J. R.
,
1999
, “
A Numerical and Experimental Study on a Parallel Plate Ice Bank
,”
Appl. Therm. Eng.
,
19
(
2
), pp.
163
193
.
18.
Ismail
,
K. A. R.
,
Castro
,
J. N.
, and
Lino
,
F. A. M.
,
2015
, “
Thermal Insulation of Walls and Roofs by PCM: Modeling and Experimental Validation
,”
Int. J. Eng. Appl. Sci.
,
2
(
9
), pp.
83
93
.
19.
Ismail
,
K. A. R.
, and
Castro
,
J. N.
,
1997
, “
PCM Thermal Insulation in Buildings
,”
Int. J. Energy Res.
,
21
(
14
), pp.
1281
1296
.
20.
Ismail
,
K. A. R.
, and
Henriquez
,
J. R.
,
1997
, “
PCM Glazing System
,”
Int. J. Energy Res.
,
21
(
13
), pp.
1241
1255
.
21.
Chassériaux
,
J. M.
,
1984
,
Conversion Thermique du Rayonnement Solaire
,
Edition Dunod
,
France
, p.
272
.
22.
Tadili
,
R.
, and
Bargach
,
M. N.
,
2005
, “
Une methode d'estimation du rayonnement solaire global reçu par une surface inclinée
,”
La Météorologie
,
50
, pp.
46
50
.
23.
Hakem
,
S. A.
,
Kasbadji-Merzouk
,
N.
, and
Merzouk
,
M.
,
2008
, “
Performances journalières d'un chauffe-eau solaire
,”
Revue des Energies Renouvelables CICME’08
, pp.
153
162
.
24.
Voller
,
V. R.
,
Cross
,
M.
, and
Markatos
,
N. C.
,
1987
, “
An Enthalpy Method for Convection/Diffusion Phase Change
,”
Int. J. Numer. Methods Eng.
,
24
(
1
), pp.
271
284
.
25.
Maroc Météo
,
2011
, “
Le Modèle ALBACHIR
,”
Maroc Météo
, Casablanca, Morocco.
26.
Pailleux
,
J.
,
Geleyn
,
J.-F.
, and
Legrand
,
G. E.
,
2000
, “
La prévision numérique du temps avec les modèles ARPEGE et ALADIN
,”
La Météorologie 8e série
,
30
, pp.
32
60
.
27.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
28.
Bouhssine
,
Z.
,
Faraji
,
M.
,
Najam
,
M.
, and
El Alami
,
M.
,
2015
, “
Numerical Investigations of the Heating of Building Integrated Phase Change Material Coupled Solar Collector
,”
Fluids Dyn. Mater. Process.
,
11
, pp.
63
85
.
29.
Alexiades
,
V.
, and
Solomon
,
A. D.
,
1993
,
Mathematical Modeling of Melting and Freezing Processes
,
Hemisphere Publishing Corporation
,
Washington, DC
, p.
305
.
30.
Bouzlou
,
Y.
,
Mourid
,
A.
,
El Alami
,
M.
,
Najam
,
M.
, and
Faraji
,
M.
,
2015
, “
Stockage d’énergie d'origine solaire dans un MCP inséré sur le toit d'un local soumis aux conditions météorologiques de Casablanca
,”
Congrès Français de Thermique, SFT'2015
, La Rochelle, France, Mai 26–29.
You do not currently have access to this content.