In this paper, a genetic algorithm-based multi-objective optimization of a building-integrated photovoltaic/thermal (BIPV/T) system is carried out to find the best system configurations which lead to maximum energetic and exergetic performances for Kermanshah, Iran climatic condition. In the proposed BIPV/T system, the cooling potential of ventilation and exhaust airs are used in buildings for cooling the PV panels and also heating the ventilation air by heat rejection of PV panels. Four scenarios with various criteria in the form of system efficiencies and useful outputs are considered to reflect all possible useful outputs in the optimization procedure. This study models a glazed BIPV/T system with various collector areas (Apv=10,15,25,and30m2) and different length to width ratio (L/W=0.5,1,1.5,and2) to determine the optimum air mass flow rate, bottom heat loss coefficient, depth of the channel as well as the optimum depth of the air gap between PV panel and glass cover that maximize two defined objective functions in different scenarios. Results showed that using fourth scenario (with the annual total useful thermal and electrical outputs as objective functions) and first scenario (with the annual average first- and second-law efficiencies as objective functions) for optimizing the proposed BIPV/T system leads to the highest amount of useful thermal and overall outputs, respectively. Moreover, it was concluded that, if the electrical output of the system is more important than the thermal output, the first scenario gives better results.

References

1.
Sarhaddi
,
F.
,
Farahat
,
S.
,
Ajam
,
H.
,
Behzadmehr
,
A.
, and
Mahdavi Adeli
,
M.
,
2010
, “
An Improved Thermal and Electrical Model for a Solar Photovoltaic Thermal (PV/T) Air Collector
,”
Appl. Energy
,
87
(7), pp.
2328
2339
.
2.
Kumar
,
S.
, and
Tiwari
,
A.
,
2010
, “
Design, Fabrication and Performance of a Hybrid Photovoltaic/Thermal (PV/T) Active Solar Still
,”
Energy Convers. Manage.
,
51
(6), pp.
1219
1229
.
3.
Chemisana
,
D.
,
Ibanez
,
M.
, and
Rosell
,
J. I.
,
2011
, “
Characterization of a Photovoltaic-Thermal Module for Fresnel Linear Concentrator
,”
Energy Convers. Manage.
,
52
(10), pp.
3234
3240
.
4.
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2011
, “
Energy and Exergy Analysis of Hybrid Micro-Channel Photovoltaic Thermal Module
,”
Sol. Energy
,
85
(2), pp.
356
370
.
5.
Kumar
,
S.
,
2013
, “
Thermal–Economic Analysis of a Hybrid Photovoltaic Thermal (PVT) Active Solar Distillation System: Role of Carbon Credit
,”
Urban Clim.
,
5
, pp.
112
124
.
6.
Axaopoulos
,
P. J.
, and
Fylladitakis
,
E. D.
,
2013
, “
Performance and Economic Evaluation of a Hybrid Photovoltaic/Thermal Solar System for Residential Applications
,”
Energy Build.
,
65
, pp.
488
496
.
7.
Gholampour
,
M.
,
Ameri
,
M.
, and
Sheykh Samani
,
M.
,
2014
, “
Experimental Study of Performance of Photovoltaic–Thermal Unglazed Transpired Solar Collectors (PV/UTCs): Energy, Exergy, and Electrical-to-Thermal Rational Approaches
,”
Sol. Energy
,
110
, pp.
636
647
.
8.
Good
,
C.
,
Andresen
,
I.
, and
Hestnes
,
A. G.
,
2015
, “
Solar Energy for Net Zero Energy Buildings—A Comparison Between Solar Thermal, PV and Photovoltaic–Thermal (PV/T) Systems
,”
Sol. Energy
,
122
, pp.
986
996
.
9.
Hussain
,
F.
,
Othman
,
M. Y. H.
,
Yatim
,
B.
,
Ruslan
,
H.
,
Sopian
,
K.
,
Anuar
,
Z.
, and
Khairuddin
,
S.
,
2015
, “
An Improved Design of Photovoltaic/Thermal Solar Collector
,”
Sol. Energy
,
122
, pp.
885
891
.
10.
Jarimi
,
H.
,
Abu Bakar
,
M. N.
,
Othman
,
M.
, and
Hj Din
,
M.
,
2016
, “
Bi-Fluid Photovoltaic/Thermal (PV/T) Solar Collector: Experimental Validation of a 2-D Theoretical Model
,”
Renewable Energy
,
85
, pp.
1052
1067
.
11.
Lin
,
W.
,
Ma
,
Z.
,
Cooper
,
P.
,
Imroz Sohel
,
M.
, and
Yangi
,
L.
,
2016
, “
Thermal Performance Investigation and Optimization of Buildings With Integrated Phase Change Materials and Solar Photovoltaic Thermal Collectors
,”
Energy Build.
,
116
, pp.
562
573
.
12.
Charalambous
,
P. G.
,
Kalogirou
,
S. A.
,
Maidment
,
G. G.
, and
Yiakoumetti
,
K.
,
2011
, “
Optimization of the Photovoltaic Thermal (PV/T) Collector Absorber
,”
Sol. Energy
,
85
(5), pp.
871
880
.
13.
Tourkov
,
K.
, and
Schaefer
,
L.
,
2015
, “
Performance Evaluation of a PVT/ORC (Photovoltaic Thermal/Organic Rankine Cycle) System With Optimization of the ORC and Evaluation of Several PV (Photovoltaic) Materials
,”
Energy
,
82
, pp.
839
849
.
14.
Thakare
,
M. S.
,
Krishna Priya
,
G. S.
,
Ghosh
,
P. C.
, and
Bandyopadhyay
,
S.
,
2016
, “
Optimization of Photovoltaic–Thermal (PVT) Based Cogeneration System Through Water Replenishment Profile
,”
Sol. Energy
,
133
, pp.
512
523
.
15.
Karathanassis
,
I. K.
,
Papanicolaou
,
E.
,
Belessiotis
,
V.
, and
Bergeles
,
G. C.
,
2013
, “
Multi-Objective Design Optimization of a Micro Heat Sink for Concentrating Photovoltaic/Thermal (CPVT) Systems Using a Genetic Algorithm
,”
Appl. Therm. Eng.
,
59
(1–2), pp.
733
744
.
16.
Vera
,
J. T.
,
Laukkanen
,
T.
, and
Siren
,
K.
,
2014
, “
Multi-Objective Optimization of Hybrid Photovoltaic–Thermal Collectors Integrated in a DHW Heating System
,”
Energy Build.
,
74
, pp.
78
90
.
17.
Singh
,
S.
,
Agrawal
,
S.
,
Tiwari
,
G. N.
, and
Chauhan
,
D.
,
2015
, “
Application of Genetic Algorithm With Multi-Objective Function to Improve the Efficiency of Glazed Photovoltaic Thermal System for New Delhi (India) Climatic Condition
,”
Sol. Energy
,
117
, pp.
153
166
.
18.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
19.
Hollands
,
K. G. T.
,
Unny
,
T. E.
,
Raithby
,
G. R.
, and
Konicek
,
L.
,
1976
, “
Free Convective Heat Transfer Across Inclined Air Layers
,”
ASME J. Heat Transfer
,
98
(2), pp.
189
193
.
20.
Tan
,
H. M.
, and
Charters
,
W. W. S.
,
1969
, “
Effect of Thermal Entrance Region on Turbulent Forced-Convective Heat Transfer for an Asymmetrically Rectangular Duct With Uniform Heat Flux
,”
Sol. Energy
,
12
(4), pp.
513
516
.
21.
Fox
,
R. W.
, and
McDonald
,
A. T.
,
1978
,
Introduction to Fluid Mechanics
,
Wiley
,
New York
.
22.
Klein
,
S. A.
,
1975
, “
Calculation of Flat-Plate Collector Loss Coefficients
,”
Sol. Energy
,
17
(1), pp.
79
80
.
23.
ASHRAE
2009
, “
ASHRAE Handbook
,”
HVAC Fundamentals
,
American Society of Heating Ventilating Air-conditioning Engineers
,
Atlanta, GA
.
24.
Florschuetz
,
L. W.
,
1979
, “
Extension of the Hottel–Whillier Model to the Analysis of Combined Photovoltaic/Thermal Flat Plate Collectors
,”
Sol. Energy
,
22
(4), pp.
361
366
.
25.
Chow
,
T.
,
Ji
,
J.
, and
He
,
W.
,
2007
, “
Photovoltaic-Thermal Collector System for Domestic Application
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
205
209
.
26.
Joshi
,
A. S.
,
Tiwari
,
A.
,
Tiwari
,
G. N.
,
Dincer
,
I.
, and
Reddy
,
B. V.
,
2009
, “
Performance Evaluation of a Hybrid Photovoltaic Thermal (PV/T) (Glass-to-Glass) System
,”
Int. J. Therm. Sci.
,
48
(1), pp.
154
164
.
27.
Tiwari
,
A.
,
Sodha
,
M. S.
,
Chandra
,
A.
, and
Joshi
,
J. C.
,
2006
, “
Performance Evaluation of Photovoltaic Thermal Solar Air Collector for Composite Climate of India
,”
Sol. Energy Mater. Sol. Cells
,
90
(2), pp.
175
189
.
28.
Shahsavar
,
A.
,
Ameri
,
M.
, and
Gholampour
,
M.
,
2012
, “
Energy and Exergy Analysis of a Photovoltaic-Thermal Collector With Natural Air Flow
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011014
.
29.
Khanmohammadi
,
S.
,
Heidarnejad
,
P.
,
Javani
,
N.
, and
Ganjehsarabi
,
H.
, “
Exergoeconomic Analysis and Multi Objective Optimization of a Solar Based Integrated Energy System for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
42
(
33
), pp.
21443
21453
.
30.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(2), pp.
187
92
.
31.
Tonui
,
J. K.
, and
Tripanagnostopoulos
,
Y.
,
2007
, “
Improved PV/T Solar Collectors With Heat Extraction by Forced or Natural Air Circulation
,”
Renewable Energy
,
32
(
4
), pp.
623
637
.
32.
Toffolo
,
A.
, and
Lazzaretto
,
A.
,
2002
, “
Evolutionary Algorithms for Multi-Objective Energetic and Economic Optimization in Thermal System Design
,”
Energy
,
27
(6), pp.
549
567
.
33.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
34.
Vera
,
J. T.
,
Laukkanen
,
T.
, and
Sirén
,
K.
,
2014
, “
Performance Evaluation and Multi-Objective Optimization of Hybrid Photovoltaic–Thermal Collectors
,”
Sol. Energy
,
102
, pp.
223
233
.
35.
Khanmohammadi
,
S.
,
Atashkari
,
K.
, and
Kouhikamali
,
R.
,
2015
, “
Exergoeconomic Multi-Objective Optimization of an Externally Fired Gas Turbine Integrated With a Biomass Gasifier
,”
Appl. Therm. Eng.
,
91
, pp.
848
859
.
36.
Khanmohammadi
,
S.
,
Atashkari
,
K.
, and
Kouhikamali
,
R.
,
2015
, “
Performance Assessment and Multi-Objective Optimization of a Trigeneration System With a Modified Biomass Gasification Model
,”
Modares Mech. Eng.
,
15
(
9
), pp.
209
222
.
You do not currently have access to this content.