The potential of sky radiation (SR) to serve the latent space cooling loads was evaluated. Using ASHRAE standard 55 comfort limits (room temperature 22 °C, relative humidity 60%, and dew-point temperature 13.9 °C), condensation was the chosen mechanism for humidity reduction. Typical meteorological year (TMY3) weather data were used for eleven ASHRAE climate zones. Three values of load-to-radiator ratio (LRR) (infiltration/ventilation volume flow rate times the ratio of building floor area to radiator area) were evaluated: 0.35, 3.5, and 35 m/h. Three thermal storage cases were considered: 1. Annual cooling potential, 2. Diurnal storage, and 3. Minimum storage capacity to serve the entire annual load. Six SR temperatures Trad = 13.9 to −26.1 °C were tested. Even in the most challenging climates, annual SR potential exceeded the total sensible and latent cooling load, at least for the lowest LRR and the highest Trad. For diurnal storage, SR served less than 20% of the load in the hot and humid southeast, but the entire load in the mountain west. The minimum storage capacity to meet the entire annual load decreased with decreasing LRR and decreasing Trad. For the southeast, large capacity was required, but for Louisville, for instance, sufficient capacity was provided by 0.05 m3 of water per m2 of floor area for LRR = 0.35 m/h. These results demonstrate that for much of the U.S., sky radiation has the potential to serve the entire annual sensible and latent cooling load.

References

1.
Robinson
,
B. S.
,
Dorwart
,
J.
, and
Sharp
,
M. K.
,
2015
, “
US Space Cooling Potentials for Ambient Sources With Thermal Energy Storage
,”
Int. J. Ambient Energy
,
36
(6), pp. 268–281.
2.
Duffie
,
J.
, and
Beckman
,
W.
,
2013
,
Solar Engineering of Instantaneous Thermal Processes
, 4th ed.,
Wiley
,
New York
.
3.
Goldstein
,
E. A.
,
Raman
,
A. P.
, and
Fan
,
S.
,
2017
, “
Sub-Ambient Non-Evaporative Fluid Cooling With the Sky
,”
Nat. Energy
,
2
(
9
), p.
17143
.
4.
Hjorstberg
,
A.
, and
Granqvist
,
C. G.
,
1981
, “
Radiative Cooling With Selectively Emitting Ethylene Gas
,”
Appl. Phys. Lett.
,
39
, pp.
507
509
.
5.
Raman
,
A. P.
,
Anoma
,
M. A.
,
Zhu
,
L.
,
Raphaeli
,
E.
, and
Fan
,
S.
,
2014
, “
Passive Radiative Cooling Below Ambient Air Temperature Under Direct Sunlight
,”
Nature
,
515
(
7528
), pp.
540
544
.
6.
Zhai
,
Y.
,
Ma
,
Y.
,
David
,
S. N.
,
Zhao
,
D.
,
Lou
,
R.
,
Tan
,
G.
,
Yang
,
R.
, and
Yin
,
X.
,
2017
, “
Scalable-Manufactured Randomized Glass-Polymer Hybrid Metamaterial for Daytime Radiative Cooling
,”
Science
,
355
(
6329
), pp.
1062
1066
.
7.
Torbjörn
,
M. J.
, and
Niklasson
,
G. A.
,
1995
, “
Radiative Cooling During the Day: Simulations and Experiments on Pigmented Polyethylene Cover Foils
,”
Sol. Energy Mater. Sol. Cells
,
37
(1), pp.
93
118
.
8.
Berdahl
,
P.
,
Martin
,
M.
, and
Sakkal
,
F.
,
1984
, “
Emissivity of Clear Skies
,”
Sol. Energy
,
32
(
5
), pp.
663
664
.
9.
Zeyghami
,
M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E.
,
2018
, “
A Review of Clear Sky Radiative Cooling Developments and Applications in Renewable Power Systems and Passive Building Cooling
,”
Sol. Energy Mater. Sol. Cells
,
178
, pp.
115
128
.
10.
Kimball
,
B. A.
,
1985
, “
Cooling Performance and Efficiency of Night Sky Radiators
,”
Sol. Energy
,
34
(
1
), pp.
19
33
.
11.
Andretta
,
A.
,
Bartoli
,
B.
,
Coluzzi
,
B.
, and
Cuomo
,
V.
,
1981
, “
Selective Surfaces for Natural Cooling Devices
,”
J. Phys.
,
42
(
1
), pp.
423
430
.https://hal.archives-ouvertes.fr/file/index/docid/220681/filename/ajp-jphyscol198142C131.pdf
12.
Catalanotti
,
S.
,
Cuomo
,
V.
,
Piro
,
G.
,
Ruggi
,
D.
,
Silvestrini
,
V.
, and
Troise
,
G.
,
1975
, “
The Radiative Cooling of Selective Surfaces
,”
Sol. Energy
,
17
(
2
), pp.
83
89
.
13.
Das
,
A. K.
, and
Iqbal
,
M.
,
1987
, “
A Simplified Technique to Compute Spectral Atmospheric Radiation
,”
Sol. Energy
,
39
(
2
), pp.
143
155
.
14.
Al-Nimr
,
M. A.
,
Kodah
,
Z.
, and
Nassar
,
B.
,
1998
, “
A Theoretical and Experimental Investigation of a Radiative Cooling System
,”
Sol. Energy
,
63
(
6
), pp.
367
373
.
15.
Al-Nimr
,
M.
,
Tahat
,
M.
, and
Al-Rashdan
,
M.
,
1999
, “
A Night Cold Storage System Enhanced by Radiative Cooling—A Modified Australian Cooling System
,”
Appl. Therm. Eng.
,
19
(
9
), pp.
1013
1026
.
16.
Erell
,
E.
, and
Etzion
,
Y.
,
1999
, “
Analysis and Experimental Verification of an Improved Cooling Radiator
,”
Renewable Energy
,
16
(
1–4
), pp.
700
703
.
17.
Hu
,
M.
,
Pei
,
G.
,
Wang
,
Q.
,
Li
,
J.
,
Wang
,
Y.
, and
Ji
,
J.
,
2016
, “
Field Test and Preliminary Analysis of a Combined Diurnal Solar Heating and Nocturnal Radiative Cooling System
,”
Appl. Energy
,
179
, pp.
899
908
.
18.
Lu
,
X.
,
Xu
,
P.
,
Wang
,
H.
,
Yang
,
T.
, and
Hou
,
J.
,
2016
, “
Cooling Potential and Applications Prospects of Passive Radiative Cooling in Buildings: The Current State-of-the-Art
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
1079
1097
.
19.
Vall
,
S.
, and
Castell
,
A.
,
2017
, “
Radiative Cooling as Low-Grade Energy Source: A Literature Review
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
803
820
.
20.
Saitoh
,
T.
, and
Ono
,
T.
,
1984
, “
Simulative Analysis for Long-term Underground Cool Storage Incorporating Sky Radiation Cooling
,”
ASME J. Sol. Energy Eng.
,
106
(
4
), pp.
493
496
.
21.
Chotivisarut
,
N.
, and
Kiatsiriroat
,
T.
,
2009
, “
Cooling Load Reduction of Building by Seasonal Nocturnal Cooling Water From Thermosyphon Heat Pipe Radiator
,”
Int. J. Energy Res.
,
33
(
12
), pp.
1089
1098
.
22.
Givoni
,
B.
,
1977
, “
Solar Heating and Night Radiation Cooling by a Roof Radiation Trap
,”
Energy Build.
,
1
(
2
), pp.
141
145
.
23.
Burch
,
J.
,
Christensen
,
C.
,
Salasovich
,
J.
, and
Thornton
,
J.
,
2004
, “
Simulation of an Unglazed Collector System for Domestic Hot Water and Space Heating and Cooling
,”
Sol. Energy
,
77
(
4
), pp.
399
406
.
24.
Al-Nimr
,
M. A.
, and
Haddad
,
O.
,
1998
, “
Water Distiller/Condenser by Radiative Cooling of Ambient Air
,”
Renewable Energy
,
13
(
3
), pp.
323
31
.
25.
Muselli
,
M.
,
Beysens
,
D.
, and
Milimouk
,
I.
,
2006
, “
A Comparative Study of Two Large Radiative Dew Water Condensers
,”
J Arid Environ.
,
64
(
1
), pp.
54
76
.
26.
Sharan
,
G.
,
2011
, “
Harvesting Dew With Radiation Cooled Condensers to Supplement Drinking Water Supply in Semi-Arid Coastal Northwest India
,”
Int. J. Serv. Learn. Eng.
,
6
(
1
), pp.
130
150
.
27.
Albanese
,
M. V.
,
Brehob
,
E. G.
,
Robinson
,
B. S.
, and
Sharp
,
M. K.
,
2012
, “
Simulated and Experimental Performance of a Heat Pipe Assisted Solar Wall
,”
Sol. Energy
,
86
(
5
), pp.
1552
1562
.
28.
Robinson
,
B. S.
,
Chmielewski
,
N. E.
,
Knox Kelecy
,
A.
,
Brehob
,
E. G.
, and
Sharp
,
M. K.
,
2013b
, “
Heating Season Performance of a Full-Scale Heat Pipe Assisted Solar Wall
,”
Sol. Energy
,
87
, pp.
76
83
.
29.
Robinson
,
B. S.
, and
Sharp
,
M. K.
,
2014
, “
Heating Season Performance Improvements for a Solar Heat Pipe System
,”
Sol. Energy
,
110
, pp.
39
49
.
30.
Susheela
,
N.
, and
Sharp
,
M. K.
,
2001
, “
A Heat Pipe Augmented Passive Solar System for Heating of Buildings
,”
J. Energy Eng.
,
127
(
1
), pp.
18
36
.
31.
Givoni
,
B.
,
1994
,
Passive Low Energy Cooling of Buildings
,
Wiley
,
New York
.
32.
Buck
,
A. L.
,
1981
, “
New Equations for Computing Vapor Pressure and Enhancement Factor
,”
J. Appl. Meteorol.
,
20
(
12
), pp.
1527
1532
.
33.
PCM Products
,
2014
, “
Phase-Change Material
,” Phase Change Material Products Ltd., Cambridgeshire, UK, accessed June 17, 2014, http://www.pcmproducts.net/files/PlusICE%20Range-2013.pdf
34.
Kreider
,
J. F.
,
Curtiss
,
P. S.
, and
Rabl
,
A.
,
2010
,
Heating and Cooling of Buildings—Design for Efficiency
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, p.
135
.
35.
ASHRAE
,
2004
, “
Thermal Environmental Conditions for Human Occupancy
,” American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, GA, Standard No.
55-2004
.http://www.aicarr.org/Documents/Editoria_Libri/ASHRAE_PDF/STD55-2004.pdf
You do not currently have access to this content.