Abstract

With increasing energy consumption in buildings, energy efficiency measures are matter of prime concern. A huge portion of energy consumed in buildings is used for regulating the thermal comfort. A solution to this is to incorporate phase change material (PCM) within the building elements which increases their overall thermal capacity. In the present study, the temperature of inner room surface, with and without PCM incorporation, is calculated for composite climate of Delhi. The analysis of PCM sandwiched walls has been performed. The performance analysis of five PCMs, having different melting temperatures, is carried out with nodal temperatures as the output. The results show that a phase change temperature range of 34–38 °C is suitable for peak summer conditions of Delhi. It is also observed that due to the low thermal conductivity of PCMs, they act as both storage medium and insulation, thus reducing temperature fluctuation during summer/winter. Based on the simulation, three PCMs were found suitable and hence were experimentally tested for their characteristic charging and discharging properties and performance, using differential scanning calorimeter (DSC). Based on the characterization results, it is concluded that two commercially available PCMs (Eicosane and OM35) are suitable for Delhi. All the other PCMs have also been simulated for different climatic conditions in India and their impact on heat gain has been assessed.

References

1.
Saikia
,
P.
,
Salam Azad
,
A.
, and
Rakshit
,
D.
,
2018
, “
Thermodynamic Analysis of Directionally Influenced Phase Change Material Embedded Building Walls
,”
Int. J. Therm. Sci.
,
126
(
1
), pp.
105
117
. 10.1016/j.ijthermalsci.2017.12.029
2.
Fateh
,
A.
,
Borelli
,
D.
,
Devia
,
F.
, and
Weinläder
,
H.
,
2017
, “
Summer Thermal Performances of PCM-Integrated Insulation Layers for Light-Weight Building Walls: Effect of Orientation and Melting Point Temperature Summer Thermal Performances of PCM-Integrated Insulation Layers for Light-Weight Building Walls: Effect of Orientation and Melting Point Temperature
,”
Therm. Sci. Eng. Prog.
,
6
(
1
), pp.
361
369
. 10.1016/j.tsep.2017.12.012
3.
Sharma
,
P.
, and
Rakshit
,
D.
,
2016
, “
Quantitative Assessment of Orientation Impact on Heat Gain Profile of Naturally Cooled Buildings in India
,”
Adv. Build. Energy Res.
, pp.
1
19
. 10.1080/17512549.2016.1215261
4.
Cabeza
,
L. F.
,
Castell
,
A.
,
Barreneche
,
C.
,
de Gracia
,
A.
, and
Fernández
,
A. I.
,
2011
, “
Materials Used as PCM in Thermal Energy Storage in Buildings: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1675
1695
. 10.1016/j.rser.2010.11.018
5.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
. 10.1016/j.rser.2007.10.005
6.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manag.
,
45
(
9–10
), pp.
1597
1615
. 10.1016/j.enconman.2003.09.015
7.
Zalba
,
B.
,
Marı´n
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
. 10.1016/S1359-4311(02)00192-8
8.
Abhat
,
A.
,
1983
, “
Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials
,”
Sol. Energy
,
30
(
4
), pp.
313
332
. 10.1016/0038-092X(83)90186-X
9.
Singh
,
R. P.
,
Kaushik
,
S. C.
, and
Rakshit
,
D.
,
2018
, “
Solidification Behavior of Binary Eutectic Phase Change Material in a Vertical Finned Thermal Storage System Dispersed With Graphene Nano-Plates
,”
Energy Convers. Manag.
,
171
, pp.
825
838
. 10.1016/j.enconman.2018.06.037
10.
Singh
,
R. P.
,
Kaushik
,
S. C.
, and
Rakshit
,
D.
,
2018
, “
Melting Phenomenon in a Finned Thermal Storage System With Graphene Nano-Plates for Medium Temperature Applications
,”
Energy Convers. Manag.
,
163
, pp.
86
99
. 10.1016/j.enconman.2018.02.053
11.
Kaushik
,
S. C.
,
Sodha
,
M. S.
,
Bhardwaj
,
S. C.
, and
Kaushik
,
N. D.
,
1981
, “
Periodic Heat Transfer and Load Levelling of Heat Flux Through a PCCM Thermal Storage Wall/Roof in an Air-Conditioned Building
,”
Build. Environ.
,
16
(
2
), pp.
99
107
. 10.1016/0360-1323(81)90026-3
12.
Ascione
,
F.
,
Bianco
,
N.
,
De Masi
,
R. F.
,
De ‘rossi
,
F.
, and
Vanoli
,
G. P.
,
2014
, “
Energy Refurbishment of Existing Buildings Through the Use of Phase Change Materials: Energy Savings and Indoor Comfort in the Cooling Season
,”
Applied Energy
,
113
(
1
), pp.
990
1007
. https://doi.org/10.1016/j.apenergy.2013.08.045
13.
KoŚny
,
J.
,
Biswas
,
K.
,
Miller
,
W.
, and
Kriner
,
S.
,
2012
, “
Field Thermal Performance of Naturally Ventilated Solar Roof With PCM Heat Sink
,”
Sol. Energy
,
86
(
9
), pp.
2504
2514
. 10.1016/j.solener.2012.05.020
14.
Entrop
,
A. G.
,
Halman
,
J. I. M.
,
Dewulf
,
G. P. M. R.
, and
Reinders
,
A. H. M. E.
,
2016
, “
Assessing the Implementation Potential of PCMs: The Situation for Residential Buildings in the Netherlands
,”
Energy Procedia
,
96
(
96
), pp.
17
32
. 10.1016/j.egypro.2016.09.090
15.
Hasan
,
M. I.
,
Basher
,
H. O.
, and
Shdhan
,
A. O.
,
2017
, “
Experimental Investigation of Phase Change Materials for Insulation of Residential Buildings
,”
Sustain. Cities Soc.
,
36
, pp.
42
58
. 10.1016/j.scs.2017.10.009
16.
Mavrigiannaki
,
A.
, and
Ampatzi
,
E.
,
2016
, “
Latent Heat Storage in Building Elements: A Systematic Review on Properties and Contextual Performance Factors
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
852
866
. 10.1016/j.rser.2016.01.115
17.
Meng
,
E.
,
Yu
,
H.
, and
Zhou
,
B.
,
2017
, “
Study of the Thermal Behavior of the Composite Phase Change Material (PCM) Room in Summer and Winter
,”
Appl. Therm. Eng.
,
126
, pp.
212
225
. 10.1016/j.applthermaleng.2017.07.110
18.
Jin
,
X.
,
Zhang
,
S.
,
Xu
,
X.
, and
Zhang
,
X.
,
2014
, “
Effects of PCM State on Its Phase Change Performance and the Thermal Performance of Building Walls
,”
Build. Environ.
,
81
, pp.
334
339
. 10.1016/j.buildenv.2014.07.012
19.
Jin
,
X.
,
Medina
,
M. A.
, and
Zhang
,
X.
,
2016
, “
Numerical Analysis for the Optimal Location of a Thin PCM Layer in Frame Walls
,”
Appl. Therm. Eng.
,
103
, pp.
1057
1063
. 10.1016/j.applthermaleng.2016.04.056
20.
Baniassadi
,
A.
,
Sajadi
,
B.
,
Amidpour
,
M.
, and
Noori
,
N.
,
2016
, “
Economic Optimization of PCM and Insulation Layer Thickness in Residential Buildings
,”
Sustain. Energy Technol. Assessments
,
14
, pp.
92
99
. 10.1016/j.seta.2016.01.008
21.
Han
,
Y.
, and
Taylor
,
J. E.
,
2016
, “
Simulating the Inter-Building Effect on Energy Consumption From Embedding Phase Change Materials in Building Envelopes
,”
Sustain. Cities Soc.
,
27
, pp.
287
295
. 10.1016/j.scs.2016.03.001
22.
Biplab
,
K.
, and
Rakshit
,
D.
,
2017
, “
Comparative Assessment of Thermal Comfort With Insulation and Phase Change Materials Utilizations In Building Roofs And Walls
,”
Adv. Mater. Proc.
,
2
(
6
), pp.
393
397
. 10.5185/amp.2017/609
23.
Pasupathy
,
A.
,
Athanasius
,
L.
,
Velraj
,
R.
, and
Seeniraj
,
R. V.
,
2008
, “
Experimental Investigation and Numerical Simulation Analysis on the Thermal Performance of a Building Roof Incorporating Phase Change Material (PCM) for Thermal Management
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
556
565
. 10.1016/j.applthermaleng.2007.04.016
24.
Saxena
,
R.
,
Biplab
,
K.
, and
Rakshit
,
D.
,
2017
, “
Quantitative Assessment of Phase Change Material Utilization for Building Cooling Load Abatement in Composite Climatic Condition
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011001
. 10.1115/1.4038047
25.
EnergyPlus
. “
Weather Data by Region
.” https://energyplus.net/weather-region/asia_wmo_region_2/IND. Accessed May 1, 2017.
26.
Bansal
,
N. K.
, and
Minke
,
G.
,
1988
,
Climatic zones and rural housing in India
, 1, Vol.
1
,
Kernforschungsanlage
,
Juelich, Germany
, pp.
1
292
. https://core.ac.uk/download/pdf/79492006.pdf
27.
Vélez
,
C.
,
Khayet
,
M.
, and
Ortiz de Zárate
,
J. M.
,
2015
, “
Temperature-Dependent Thermal Properties of Solid/Liquid Phase Change Even-Numbered n-Alkanes: n-Hexadecane, n-Octadecane and n-Eicosane
,”
Appl. Energy
,
143
, pp.
383
394
. 10.1016/j.apenergy.2015.01.054
28.
Thermal-Fluids Central
. “
Thermal-FluidsPedia: Thermophysical Properties: Phase Change Materials
.” https://www.thermalfluidscentral.org/encyclopedia/index.php/Thermophysical_Properties:_Phase_Change_Materials. Accessed May 29, 2017.
29.
Li
,
H.
,
Liu
,
X.
, and
Fang
,
G.
,
2010
, “
Preparation and Characteristics of N-Nonadecane/Cement Composites as Thermal Energy Storage Materials in Buildings
,”
Energy Build.
,
42
, pp.
1661
1665
. 10.1016/j.enbuild.2010.04.009
30.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
31.
Tabares-Velasco
,
P. C.
, and
Griffith
,
B.
,
2012
, “
Diagnostic Test Cases for Verifying Surface Heat Transfer Algorithms and Boundary Conditions in Building Energy Simulation Programs
,”
J. Build. Perform. Simul.
,
5
(
5
), pp.
329
346
. 10.1080/19401493.2011.595501
32.
Pedersen
,
C. O.
,
2007
, “
Advanced Zone Simulation in EnergyPlus: Incorporation of Variable Properties and Phase Change Material (PCM) Capability
,”
Proc. Build. Simul.
, pp.
1341
1345
.
33.
Nghana
,
B.
, and
Tariku
,
F.
,
2016
, “
Phase Change Material’s (PCM) Impacts on the Energy Performance and Thermal Comfort of Buildings in a Mild Climate
,”
Build. Environ.
,
99
, pp.
221
238
. 10.1016/j.buildenv.2016.01.023
34.
Santamouris
,
M.
,
2006
, “
Adaptive Thermal Comfort and Ventilation
.” https://pdfs.semanticscholar.org/ddbe/4ba40f26371cefddf76c95364369bcccd490.pdf, Accessed June 8, 2019.
35.
TA Instruments Pvt. Ltd.
DSC Online Help
.” http://folk.ntnu.no/deng/fra_nt/other%20stuff/DSC_manuals/QDSC/Welcome_to_TA_Instruments_Advant.htm, Accessed April 9, 2017.
You do not currently have access to this content.