Abstract

In this paper, the details of a numerical study performed for the optimum fin arrangement in a solar air heater with a rectangular fin array attached to the bottom side of the absorber plate have been presented. Results have been presented for various fin sizes and spacing between the fins, while the heat transfer and fluid flow are directed by natural convection. An inclined rectangular channel similar to the dimensions of a typical solar air heater has been considered. Three different fin configurations, namely, continuous long fins for the whole length of the channel, in-line interrupted and staggered interrupted arrangements of fins, have been studied. The present analysis aims to identify the optimum configuration of the fin array for enhanced heat transfer. The spacing between the fins and the height of the fins are varied to obtain an optimum configuration. The numerical simulations are performed for heat flux (q″) ranging from 250 to 750 W/m2 on the absorber plate. The inclination angles of the channel (θ) have been maintained at 15 deg, 30 deg, and 45 deg from the horizontal plane. The results show that with the spacing between fins, S = 5.4 cm performs better in the case of longitudinal continuous fin arrangement. However, a fin spacing of 4.75 cm shows a higher heat transfer in the case of staggered fin configuration. In comparison with nine long uninterrupted fins, using the staggered arrangement with 15 × 10 fins saves up to 33% of fin material.

References

1.
Alta
,
D.
,
Bilgili
,
E.
,
Ertekin
,
C.
, and
Yaldiz
,
O.
,
2010
, “
Experimental Investigation of Three Different Solar Air Heaters: Energy and Exergy Analyses
,”
Appl. Energy
,
87
(
10
), pp.
2953
2973
. 10.1016/j.apenergy.2010.04.016
2.
Starner
,
K. E.
, and
McManus
,
H. N.
,
1963
, “
An Experimental Investigation of Free-Convection Heat Transfer From Rectangular-Fin Arrays
,”
ASME J. Heat Transfer
,
85
(
3
), pp.
273
277
. 10.1115/1.3686097
3.
Elenbaas
,
W.
,
1942
, “
Heat Dissipation of Parallel Plates by Free Convection
,”
Physica
,
9
(
1
), pp.
1
28
. 10.1016/s0031-8914(42)90053-3
4.
Welling
,
J. R.
, and
Wooldridge
,
C. B.
,
1965
, “
Free Convection Heat Transfer Coefficients From Rectangular Vertical Fins
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
439
444
. 10.1115/1.3689135
5.
Harahap
,
F.
, and
McManus
,
H. N.
,
1967
, “
Natural Convection Heat Transfer From Horizontal Rectangular Fin Arrays
,”
ASME J. Heat Transfer
,
89
(
1
), pp.
32
38
. 10.1115/1.3614318
6.
Jones
,
C. D.
, and
Smith
,
L. F.
,
1970
, “
Optimum Arrangement of Rectangular Fins on Horizontal Surfaces for Free-Convection Heat Transfer
,”
ASME J. Heat Transfer
,
92
(
1
), pp.
6
10
. 10.1115/1.3449648
7.
Donovan
,
R. C.
, and
Rohrer
,
W. M.
,
1971
, “
Radiative and Convective Conducting Fins on a Plane Wall, Including Mutual Irradiation
,”
ASME J. Heat Transfer
,
93
(
1
), pp.
41
46
. 10.1115/1.3449763
8.
Acharya
,
S.
, and
Patankar
,
S. V.
,
1981
, “
Laminar Mixed Convection in a Shrouded Fin Array
,”
ASME J. Heat Transfer
,
103
(
3
), pp.
559
565
. 10.1115/1.3244502
9.
Bar-Cohen
,
A.
, and
Rohsenow
,
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
116
123
. 10.1115/1.3246622
10.
Sparrow
,
E. M.
, and
Vemuri
,
S. B.
,
1985
, “
Natural Convection/Radiation Heat Transfer From Highly Populated Pin Fin Arrays
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
190
197
. 10.1115/1.3247377
11.
Daloglu
,
A.
, and
Ayhan
,
T.
,
1999
, “
Natural Convection in a Periodically Finned Vertical Channel
,”
Int. Commun. Heat Mass Transfer
,
26
(
8
), pp.
1175
1182
. 10.1016/S0735-1933(99)00107-4
12.
Baskaya
,
S.
,
Sivrioglu
,
M.
, and
Ozek
,
M.
,
2000
, “
Parametric Study of Natural Convection Heat Transfer From Horizontal Rectangular Fin Arrays
,”
Int. J. Therm. Sci.
,
39
(
8
), pp.
797
805
. 10.1016/S1290-0729(00)00271-4
13.
Mobedi
,
M.
, and
Yüncü
,
H.
,
2003
, “
A Three Dimensional Numerical Study on Natural Convection Heat Transfer From Short Horizontal Rectangular Fin Array
,”
Heat Mass Transfer
,
39
(
4
), pp.
267
275
. 10.1007/s00231-002-0360-5
14.
Maughan
,
J. R.
, and
Incropera
,
F. P.
,
1990
, “
Mixed Convection Heat Transfer With Longitudinal Fins in a Horizontal Parallel Plate Channel: Part I—Numerical Results
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
612
618
. 10.1115/1.2910431
15.
Maughan
,
J. R.
, and
Incropera
,
F. P.
,
1990
, “
Mixed Convection Heat Transfer With Longitudinal Fins in a Horizontal Parallel Plate Channel: Part II—Experimental Results
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
619
624
. 10.1115/1.2910432
16.
Ahmadi
,
M.
,
Mostafavi
,
G.
, and
Bahrami
,
M.
,
2014
, “
Natural Convection From Rectangular Interrupted Fins
,”
Int. J. Therm. Sci.
,
82
, pp.
62
71
. 10.1016/j.ijthermalsci.2014.03.016
17.
Shen
,
Q.
,
Sun
,
D.
,
Xu
,
Y.
,
Jin
,
T.
, and
Zhao
,
X.
,
2014
, “
Orientation Effects on Natural Convection Heat Dissipation of Rectangular Fin Heat Sinks Mounted on LEDs
,”
Int. J. Heat Mass Transfer
,
75
, pp.
462
469
. 10.1016/j.ijheatmasstransfer.2014.03.085
18.
Jeon
,
D.
, and
Byon
,
C.
,
2017
, “
Thermal Performance of Plate Fin Heat Sinks With Dual-Height Fins Subject to Natural Convection
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1086
1092
. 10.1016/j.ijheatmasstransfer.2017.06.031
19.
Fakoor Pakdaman
,
M.
,
Lashkari
,
A.
,
Basirat Tabrizi
,
H.
, and
Hosseini
,
R.
,
2011
, “
Performance Evaluation of a Natural-Convection Solar Air-Heater With a Rectangular-Finned Absorber Plate
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1215
1225
. 10.1016/j.enconman.2010.09.017
20.
Hosseini
,
S. S.
,
Ramiar
,
A.
, and
Ranjbar
,
A. A.
,
2018
, “
Numerical Investigation of Natural Convection Solar Air Heater With Different Fins Shape
,”
Renew. Energy
,
117
, pp.
488
500
. 10.1016/j.renene.2017.10.052
21.
Hosseini
,
S. S.
,
Ramiar
,
A.
, and
Ranjbar
,
A. A.
,
2017
, “
Numerical Investigation of Rectangular Fin Geometry Effect on Solar Chimney
,”
Energy Build.
,
155
, pp.
296
307
. 10.1016/j.enbuild.2017.09.017
22.
Pangavhane
,
D. R.
,
Sawhney
,
R. L.
, and
Sarsavadia
,
P. N.
,
2002
, “
Design, Development and Performance Testing of a New Natural Convection Solar Dryer
,”
Energy
,
27
(
6
), pp.
579
590
. 10.1016/S0360-5442(02)00005-1
23.
Maliska
,
C. R.
, and
Marcondes
,
F.
,
1993
, “
Elliptic Calculations of Natural Convection Flows in Arbitrary Channels
,”
Proceedings of the 8th International Conference on Laminar and Turbulent Flow
,
Swansea
,
July 18–23
, pp.
388
399
.
24.
Li
,
H.
, and
Tong
,
S.
,
2016
, “
Natural Convective Heat Transfer in the Inclined Rectangular Cavities With Low Width-to-Height Ratios
,”
Int. J. Heat Mass Transfer
,
93
, pp.
398
407
. 10.1016/j.ijheatmasstransfer.2015.10.027
25.
Tong
,
S.
, and
Li
,
H.
,
2014
, “
An Efficient Model Development and Experimental Study for the Heat Transfer in Naturally Ventilated Inclined Roofs
,”
Build. Environ.
,
81
, pp.
296
308
. 10.1016/j.buildenv.2014.07.009
26.
Gagliano
,
A.
,
Patania
,
F.
,
Nocera
,
F.
,
Ferlito
,
A.
, and
Galesi
,
A.
,
2012
, “
Thermal Performance of Ventilated Roofs During Summer Period
,”
Energy Build.
,
49
, pp.
611
618
. 10.1016/j.enbuild.2012.03.007
27.
Morrone
,
B.
,
Campo
,
A.
, and
Manca
,
O.
,
1997
, “
Optimum Plate Separation in Vertical Parallel Plate Channels for Natural Convective Flows: Incorporation of Large Spaces at the Channel Extremes
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
993
1000
. 10.1016/0017-9310(96)00197-4
28.
Campo
,
A.
,
Manca
,
O.
, and
Morrone
,
B.
,
1999
, “
Numerical Analysis of Partially Heated Vertical Parallel Plates in Natural Convective Cooling
,”
Numer. Heat Transfer Part A
,
36
(
2
), pp.
129
151
. 10.1080/104077899274813
29.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2013
, “
A CFD Analysis of a Solar Air Heater Having Triangular Rib Roughness on the Absorber Plate
,”
Int. J. ChemTech Res.
,
5
(
2
), pp.
964
971
. 10.1016/j.ijheatmasstransfer.2013.11.074
30.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2013
, “
A CFD (Computational Fluid Dynamics) Based Heat Transfer and Fluid Flow Analysis of a Solar Air Heater Provided With Circular Transverse Wire Rib Roughness on the Absorber Plate
,”
Energy
,
55
, pp.
1127
1142
. 10.1016/j.energy.2013.03.066
31.
Cheng
,
G.
, and
Zhang
,
L.
,
2011
, “
Numerical Simulation of Solar Air Heater With V-Groove Absorber Used in HD Desalination
,”
Desalin. Water Treat.
,
28
(
1–3
), pp.
239
246
. 10.5004/dwt.2011.1820
32.
Yilmaz
,
T.
, and
Fraser
,
S. M.
,
2007
, “
Turbulent Natural Convection in a Vertical Parallel-Plate Channel With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2612
2623
. 10.1016/j.ijheatmasstransfer.2006.11.027
33.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
. 10.1017/S0022112075001814
34.
Chami
,
N.
, and
Zoughaib
,
A.
,
2010
, “
Modeling Natural Convection in a Pitched Thermosyphon System in Building Roofs and Experimental Validation Using Particle Image Velocimetry
,”
Energy Build.
,
42
(
8
), pp.
1267
1274
. 10.1016/j.enbuild.2010.02.019
35.
Lau
,
G. E.
,
Sanvicente
,
E.
,
Yeoh
,
G. H.
,
Timchenko
,
V.
,
Fossa
,
M.
,
Ménézo
,
C.
, and
Giroux-Julien
,
S.
,
2012
, “
Modelling of Natural Convection in Vertical and Tilted Photovoltaic Applications
,”
Energy Build.
,
55
, pp.
810
822
. 10.1016/j.enbuild.2012.10.014
36.
Alzwayi
,
A. S.
, and
Paul
,
M. C.
,
2013
, “
Effect of Width and Temperature of a Vertical Parallel Plate Channel on the Transition of the Developing Thermal Boundary Layer
,”
Int. J. Heat Mass Transfer
,
63
, pp.
20
30
. 10.1016/j.ijheatmasstransfer.2013.03.056
37.
Alzwayi
,
A. S.
, and
Paul
,
M. C.
,
2014
, “
Transition of Free Convection Flow Inside an Inclined Parallel Walled Channel: Effects of Inclination Angle and Width of the Channel
,”
Int. J. Heat Mass Transfer
,
68
, pp.
194
202
. 10.1016/j.ijheatmasstransfer.2013.09.015
38.
Kumar
,
D.
, and
Premachandran
,
B.
,
2019
, “
Effect of Atmospheric Wind on Natural Convection Based Solar Air Heaters
,”
Int. J. Therm. Sci.
,
138
, pp.
263
275
. 10.1016/j.ijthermalsci.2018.12.010
39.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New kɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
. 10.1016/0045-7930(94)00032-T
40.
ANSYS FLUENT
,
2013
, Theory Guide 15.0.
ANSYS, Inc.
,
Canonsburg
.
41.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, Vol.
58
,
Hemisphere Publishing Corporation
,
New York
.
42.
Larsen
,
M. E.
, and
Howell
,
J. R.
,
1984
, “
Least-Squares Smoothing of Direct-Exchange Areas in Zonal Analysis (No. SAND-83-2358C; CONF-840816-1)
,”
Sandia National Labs
,
Albuquerque, NM
; Dept. of Mechanical Engineering, Texas Univ., Austin, TX.
43.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
44.
Katoh
,
Y.
,
Miyamoto
,
M.
,
Kurima
,
J.
, and
Kaneyasu
,
S.
,
1991
, “
Turbulent Free Convection Heat Transfer From Vertical Parallel Plates: Effect of Entrance Bell-Mouth Shape
,”
JSME Int. J.
,
34
(
4
), pp.
496
501
. 10.1299/jsmeb1988.34.4_496
You do not currently have access to this content.