Abstract

Solar chimney is a passive renewable technology, adopted and followed widely for the application of room ventilation and power production. It requires a wide space for operation. Hence, an effective heat transfer mechanism is required within the available space to improve the performance. The solar chimney is integrated with a solar still using an external condenser to effectively utilize the energy released during the condensation of water vapor in the external condenser. The external condenser acts as an additional heat source besides the solar collector in the solar chimney. The experiments were conducted with the solar chimney of heights 1 m and 2 m, by considering the effects of an external condenser in both summer and winter. Heat transfer studies on the external condenser are also made to determine the effectiveness and the number of transfer units. The temperature and mass flow rate of vapor in the still are the influential parameters on the effectiveness of the external condenser. The condensation energy released from the external condenser increased the daily average air velocity by 14.9% and 22.4% in summer and winter, respectively. However, the overall solar chimney efficiency was improved by 37.1% in summer and 14.5% in winter for the integrated system with the chimney of height 2 m.

References

1.
Ürge-Vorsatz
,
D.
,
Cabeza
,
L. F.
,
Serrano
,
S.
, and
Barreneche
,
C.
,
2015
, “
Heating and Cooling Energy Trends and Drivers in Buildings
,”
Renewable Sustainable Energy Rev.
,
41
(
1
), pp.
85
98
. 10.1016/j.rser.2014.08.039
2.
Sun
,
X.
,
Gou
,
Z.
, and
Lau
,
S. S.
,
2018
, “
Cost-Effectiveness of Active and Passive Design Strategies for Existing Building Retrofits in Tropical Climate : Case Study of a Zero Energy Building
,”
J. Clean. Prod.
,
183
(
5
), pp.
35
45
. 10.1016/j.jclepro.2018.02.137
3.
Shi
,
L.
,
Zhang
,
G.
,
Yang
,
W.
,
Huang
,
D.
,
Cheng
,
X.
, and
Setunge
,
S.
,
2018
, “
Determining the Influencing Factors on the Performance of Solar Chimney in Buildings
,”
Renewable Sustainable Energy Rev.
,
88
(
5
), pp.
223
238
. 10.1016/j.rser.2018.02.033
4.
Monghasemi
,
N.
, and
Vadiee
,
A.
,
2018
, “
A Review of Solar Chimney Integrated Systems for Space Heating and Cooling Application
,”
Renewable Sustainable Energy Rev.
,
81
(
1
), pp.
2714
2730
. 10.1016/j.rser.2017.06.078
5.
Kasaeian
,
A. B.
,
Molana
,
S.
,
Rahmani
,
K.
, and
Wen
,
D.
,
2017
, “
A Review on Solar Chimney Systems in Buildings
,”
Renewable Sustainable Energy Rev.
,
67
(
10
), pp.
954
987
. 10.1016/j.rser.2016.09.081
6.
Ekechukwu
,
O. V.
, and
Norton
,
B.
,
1995
, “
Design and Measured Performance of a Solar Chimney for Natural Circulation Solar Energy Dryers
,”
Renewable Energy
,
1
(
1
), pp.
1994
1996
. 10.1115/1.2847956
7.
Tedesco
,
F. C.
,
Jos
,
A.
, and
Design
,
C.
,
2019
, “
Design, Construction, and Analysis of a Passive Indirect Solar Dryer With Chimney
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), pp.
1
9
. 10.1115/1.4041931
8.
Guo
,
P.
,
Wang
,
Y.
,
Meng
,
Q.
, and
Li
,
J.
,
2016
, “
Experimental Study on an Indoor Scale Solar Chimney Setup in an Artificial Environment Simulation Laboratory
,”
Appl. Therm. Eng.
,
107
(
8
), pp.
818
826
. 10.1016/j.applthermaleng.2016.07.025
9.
Serageldin
,
A. A.
,
Abdelrahman
,
A. K.
, and
Ookawara
,
S.
,
2018
, “
Parametric Study and Optimization of a Solar Chimney Passive Ventilation System Coupled With an Earth-to-Air Heat Exchanger
,”
Sustain. Energy Technol. Assessments.
,
30
(
12
), pp.
263
278
. 10.1016/j.seta.2018.10.010
10.
Liu
,
S.
, and
Li
,
Y.
,
2015
, “
Heating Performance of a Solar Chimney Combined PCM: A Numerical Case Study
,”
Energy Build.
,
99
(
7
), pp.
117
130
. 10.1016/j.enbuild.2015.04.020
11.
Bashirnezhad
,
K.
,
Ahmad
,
S.
, and
Moosavi
,
A.
,
2018
, “
The Experimental Appraisement of the Effect of Energy Storage on the Performance of Solar Chimney Using Phase Change Material
,”
Sol. Energy.
,
169
(
7
), pp.
411
423
. 10.1016/j.solener.2018.05.001
12.
Al-kayiem
,
H. H.
,
Sreejaya
,
K. V.
, and
Chikere
,
A. O.
,
2018
, “
Experimental and Numerical Analysis of the Influence of Inlet Configuration on the Performance of a Roof top Solar Chimney
,”
Energy Build.
,
159
(
1
), pp.
89
98
. 10.1016/j.enbuild.2017.10.063
13.
Shahreza
,
A. R.
, and
Imani
,
H.
,
2015
, “
Experimental and Numerical Investigation on an Innovative Solar Chimney
,”
Energy Convers. Manag.
,
95
(
5
), pp.
446
452
. 10.1016/j.enconman.2014.10.051
14.
Nayar
,
K. G.
,
Sundararaman
,
P.
,
O’Connor
,
C. L.
,
Schacherl
,
J. D.
,
Heath
,
M. L.
,
Gabriel
,
M. O.
,
Shah
,
S. R.
,
Wright
,
N. C.
, and
Winter V
,
A. G.
,
2016
, “
Feasibility Study of an Electrodialysis System for in-Home Water Desalination in Urban India
,”
Dev. Eng.
,
2
(
1
), pp.
38
46
. 10.1016/j.deveng.2016.12.001
15.
Selvaraj
,
K.
, and
Natarajan
,
A.
,
2018
, “
Factors Influencing the Performance and Productivity of Solar Stills—A Review
,”
Desalination.
,
435
(
6
), pp.
181
187
. 10.1016/j.desal.2017.09.031
16.
Xiao
,
G.
,
Wang
,
X.
,
Ni
,
M.
,
Wang
,
F.
,
Zhu
,
W.
,
Luo
,
Z.
, and
Cen
,
K.
,
2013
, “
A Review on Solar Stills for Brine Desalination
,”
Appl. Energy.
,
103
(
3
), pp.
642
652
. 10.1016/j.apenergy.2012.10.029
17.
Samuel Hansen
,
R.
, and
Kalidasa Murugavel
,
K.
,
2017
, “
Enhancement of Integrated Solar Still Using Different New Absorber Configurations: An Experimental Approach
,”
Desalination.
,
422
(
11
), pp.
59
67
. 10.1016/j.desal.2017.08.015
18.
Manokar
,
A. M.
,
Murugavel
,
K. K.
, and
Esakkimuthu
,
G.
,
2014
, “
Different Parameters Affecting the Rate of Evaporation and Condensation on Passive Solar Still—A Review
,”
Renewable Sustainable Energy Rev.
,
38
(
10
), pp.
309
322
. 10.1016/j.rser.2014.05.092
19.
Ankoliya
,
D. B.
,
Modi
,
K. V.
, and
Shukla
,
D. L.
,
2018
, “
A Comparative Performance Study of Double Basin Single Slope Solar Still With and Without Using Nanoparticles
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031008
. 10.1115/1.4041838
20.
Rahim
,
N. A.
, and
Taqi
,
E.
,
1992
, “
Comparison of Free and Forced Condensing System in Solar Desalination Units
,”
Renewable Energy
,
2
(
4–5
), pp.
405
410
. 10.1016/0960-1481(92)90074-D
21.
Bhardwaj
,
R.
,
ten Kortenaar
,
M. V.
, and
Mudde
,
R. F.
,
2016
, “
Inflatable Plastic Solar Still With Passive Condenser for Single Family Use
,”
Desalination.
,
398
(
11
), pp.
151
156
. 10.1016/j.desal.2016.07.011
22.
Bhardwaj
,
R.
,
Ten Kortenaar
,
M. V.
, and
Mudde
,
R. F.
,
2015
, “
Maximized Production of Water by Increasing Area of Condensation Surface for Solar Distillation
,”
Appl. Energy.
,
154
(
9
), pp.
480
490
. 10.1016/j.apenergy.2015.05.060
23.
Zhou
,
X.
,
Xiao
,
B.
,
Liu
,
W.
,
Guo
,
X.
,
Yang
,
J.
, and
Fan
,
J.
,
2010
, “
Comparison of Classical Solar Chimney Power System and Combined Solar Chimney System for Power Generation and Seawater Desalination
,”
Desalination.
,
250
(
1
), pp.
249
256
. 10.1016/j.desal.2009.03.007
24.
Zuo
,
L.
,
Zheng
,
Y.
,
Li
,
Z.
, and
Sha
,
Y.
,
2011
, “
Solar Chimneys Integrated With Sea Water Desalination
,”
Desalination.
,
276
(
1–3
), pp.
207
213
. 10.1016/j.desal.2011.03.052
25.
Zuo
,
L.
,
Yuan
,
Y.
,
Li
,
Z.
, and
Zheng
,
Y.
,
2012
, “
Experimental Research on Solar Chimneys Integrated With Seawater Desalination Under Practical Weather Condition
,”
Desalination.
,
298
(
7
), pp.
22
33
. 10.1016/j.desal.2012.05.001
26.
Maia
,
C. B.
,
Silva
,
F. V. M.
,
Oliveira
,
V. L. C.
, and
Kazmerski
,
L. L.
,
2019
, “
An Overview of the Use of Solar Chimneys for Desalination Solar Desalination
,”
Sol. Energy.
,
183
(
5
), pp.
83
95
. 10.1016/j.solener.2019.03.007
27.
Sivaram
,
P. M.
,
Harish
,
S.
,
Premalatha
,
M.
, and
Arunagiri
,
A.
,
2018
, “
Performance Analysis of Solar Chimney Using Mathematical and Experimental Approaches
,”
Int. J. Energy Res.
,
42
(
7
), pp.
2373
2385
. 10.1002/er.4007
28.
Holman
,
J. P.
,
2001
,
Experimental Methods for Engineers
,
McGraw-Hill
,
Singapore
.
29.
Akpinar
,
E. K.
,
2010
, “
Drying of Mint Leaves in a Solar Dryer and Under Open sun : Modelling, Performance Analyses
,”
Energy Convers. Manag.
,
51
(
12
), pp.
2407
2418
. 10.1016/j.enconman.2010.05.005
30.
Moffat
,
R. J.
,
2019
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME. J. Fluids Eng.
107
(
2
),
173
178
31.
De Oliveira
,
L.
, and
Marques
,
F.
,
2018
, “
Simulation and Measurements of Wind Interference on a Solar Chimney Performance
,”
J. Wind Eng. Ind. Aerodyn.
,
179
(
8
), pp.
135
145
. 10.1016/j.jweia.2018.05.020
32.
Mande
,
A. B.
, and
Manickam
,
P.
,
2018
, “
Enhanced Solar Still Productivity Using Transparent Walls With an Integral Trough and Organic Porous Absorber Material
,”
Int. J. Green Energy.
,
16
(
3
), pp.
1
17
. 10.1080/15435075.2018.1549995
33.
Visvesaraya
,
H. C.
,
1987
,
Handbook on Functional Requirements of Buildings
,
Bureau of Indian Standards, New Delhi
. 10.2147/NDT.S77307
34.
Mathur
,
J.
, and
Mathur, Anupma
,
S.
,
2006
, “
Summer-Performance of Inclined Roof Solar Chimney for Natural Ventilation
,”
Energy Build.
,
38
(
10
), pp.
1156
1163
. 10.1016/j.enbuild.2006.01.006
35.
Mathur
,
J.
,
Bansal
,
N. K.
,
Mathur
,
S.
, and
Jain, Anupma
,
M.
,
2006
, “
Experimental Investigations on Solar Chimney for Room Ventilation
,”
Sol. Energy.
,
80
(
8
), pp.
927
935
. 10.1016/j.solener.2005.08.008
36.
Al-Kayiem
,
H. H.
,
Sreejaya
,
K. V.
, and
Gilani
,
S. I. U. H.
,
2014
, “
Mathematical Analysis of the Influence of the Chimney Height and Collector Area on the Performance of a Roof top Solar Chimney
,”
Energy Build.
,
68
(
1
), pp.
305
311
. 10.1016/j.enbuild.2013.09.021
You do not currently have access to this content.