Abstract

In this work, the design of a hydrogen production system was optimized for Algiers in Algeria. The system produces hydrogen by electrolysis using a photovoltaic (PV) generator as a source of electricity. All the elements of the system have been modeled to take into account practical constraints. The cost of producing hydrogen has been minimized by varying the total power of the photovoltaic generator. An optimal ratio between the peak power of the PV array and the nominal power of the electrolyzer was determined. Photovoltaic module technology has been varied using a large database of electrical characteristics. It was noted that PV technology does not have a very significant impact on cost. The minimum cost is around 0.44$/N m3, and the power ratio in this case is 1.45. This results in a cost reduction of around 12% compared to a unit ratio. The power ratio and cost are linearly dependent. Only a small number of technologies give a relatively low cost of about 0.35$/N m3. These generators are interesting; however, we assumed an initial cost of $2.00/Wp for all technologies. In addition, it was noted that it is possible to increase hydrogen production by 10% by increasing the power of the photovoltaic generator, the extra cost in this case will only be 0.1%.

References

1.
Santos
,
G.
,
2017
, “
Road Transport and CO2 Emissions: What Are the Challenges?
,”
Transp. Policy
,
59
, pp.
71
74
. 10.1016/j.tranpol.2017.06.007
2.
International Energy Agency
,
2017
,
Global EV Outlook 2017: Two Million and Counting
,
IEA Publ.
, pp.
1
71
.
3.
Kelly
,
N. A.
,
2014
, “6—Hydrogen Production by Water Electrolysis,”
Advances in Hydrogen Production, Storage and Distribution
,
A.
Basile
, and
A.
Iulianelli
, eds.,
Woodhead Publishing
, pp.
159
185
.
4.
Kelly
,
N. A.
,
Gibson
,
T. L.
, and
Ouwerkerk
,
D. B.
,
2011
, “
Generation of High-Pressure Hydrogen for Fuel Cell Electric Vehicles Using Photovoltaic-Powered Water Electrolysis
,”
Int. J. Hydrogen Energy
,
36
(
24
), pp.
15803
15825
. 10.1016/j.ijhydene.2011.08.058
5.
Tani
,
T.
,
Sekiguchi
,
N.
,
Sakai
,
M.
, and
Ohta
,
D.
,
2000
, “
Optimization of Solar Hydrogen Systems Based on Hydrogen Production Cost
,”
Sol. Energy
,
68
(
2
), pp.
143
149
. 10.1016/S0038-092X(99)00061-4
6.
Inthamoussou
,
F. A.
,
Battista
,
H. D.
, and
Mantz
,
R. J.
,
2012
, “
New Concept in Maximum Power Tracking for the Control of a Photovoltaic/Hydrogen System
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14951
14958
. 10.1016/j.ijhydene.2012.01.176
7.
Appelbaum
,
J.
,
Khouzam
,
K. Y.
, and
Dagan
,
Y.
,
2006
, “
Photovoltaic Systems for Electrolysis Using a Maximum Power Point Tracker
,”
2006 IEEE 24th Convention of Electrical Electronics Engineers
,
Israel
,
Nov. 15–17
, pp.
21
24
.
8.
Crosa
,
G.
,
Lubiano
,
M.
, and
Trucco
,
A.
,
2006
, “
Modelling of PV-Powered Water Electrolysers
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, pp.
423
431
.
9.
Barbir
,
F.
,
2005
, “
PEM Electrolysis for Production of Hydrogen From Renewable Energy Sources
,”
Sol. Energy
,
78
(
5
), pp.
661
669
. 10.1016/j.solener.2004.09.003
10.
García-Valverde
,
R.
,
Miguel
,
C.
,
Martínez-Béjar
,
R.
, and
Urbina
,
A.
,
2008
, “
Optimized Photovoltaic Generator–Water Electrolyser Coupling Through a Controlled DC–DC Converter
,”
Int. J. Hydrogen Energy
,
33
(
20
), pp.
5352
5362
. 10.1016/j.ijhydene.2008.06.015
11.
Loong
,
Y.
,
Dahari
,
M.
,
Yap
,
H.
, and
Chong
,
H.
,
2013
, “
Development of a System Configuration for a Solar Powered Hydrogen Facility Using Fuzzy Logic Control
,”
J. Zhejiang Univ. Sci. A
,
14
(
11
), pp.
822
834
. 10.1631/jzus.A1300242
12.
Ghribi
,
D.
,
Khelifa
,
A.
,
Diaf
,
S.
, and
Belhamel
,
M.
,
2013
, “
Study of Hydrogen Production System by Using PV Solar Energy and PEM Electrolyser in Algeria
,”
Int. J. Hydrogen Energy
,
38
(
20
), pp.
8480
8490
. 10.1016/j.ijhydene.2012.09.175
13.
Barbir
,
F.
,
1999
, “
Integrated Renewable Hydrogen Utility System (IRHUS) Business Plan
,”
DOE/GO/10340–T1, 345036
.
14.
Esteban David Huaca Delgado
,
2018
, “
From Solar to Hydrogen Energy: Modelling, Design, and Construction of a System for Hydrogen Production Using Photovoltaic Panels
,”
Master Thesis
,
Delft University of Technology
,
Delft
.
15.
Castellanos
,
J. G.
,
Walker
,
M.
,
Poggio
,
D.
,
Pourkashanian
,
M.
, and
Nimmo
,
W.
,
2015
, “
Modelling an Off-Grid Integrated Renewable Energy System for Rural Electrification in India Using Photovoltaics and Anaerobic Digestion
,”
Renew. Energy
,
74
, pp.
390
398
. 10.1016/j.renene.2014.08.055
16.
Grana
,
P.
,
2016
,
Solar Inverters and Clipping: What DC/AC Inverter Load Ratio is Ideal?
,
Solar Power World
.
17.
Joyce
,
K.
,
2012
,
Optimizing PV Plant Design to Achieve a Low Levelized Cost of Energy
,
Black & Veatch
.
18.
Fedorov
,
A.
,
2015
,
Photovoltaic System Design for a Contaminated Area in Falun–Comparison of South and East-West Layout
,
European Solar Engineering School—Dalarna University
.
19.
Ulleberg
,
O.
,
2003
, “
Modeling of Advanced Alkaline Electrolyzers: A System Simulation Approach
,”
Int. J. Hydrogen Energy
,
28
(
1
), pp.
21
33
. 10.1016/S0360-3199(02)00033-2
20.
Boyd
,
M. T.
,
Klein
,
S. A.
,
Reindl
,
D. T.
, and
Dougherty
,
B. P.
,
2011
, “
Evaluation and Validation of Equivalent Circuit Photovoltaic Solar Cell Performance Models
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
021005
. 10.1115/1.4003584
21.
De Soto
,
W.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
2006
, “
Improvement and Validation of a Model for Photovoltaic Array Performance
,”
Sol. Energy
,
80
(
1
), pp.
78
88
. 10.1016/j.solener.2005.06.010
22.
Ursua
,
A.
,
Gandia
,
L. M.
, and
Sanchis
,
P.
,
2012
, “
Hydrogen Production From Water Electrolysis: Current Status and Future Trends
,”
Proc. IEEE
,
100
(
2
), pp.
410
426
. 10.1109/JPROC.2011.2156750
23.
Ghosh
,
P. C.
,
Emonts
,
B.
,
Jan[ß]en
,
H.
,
Mergel
,
J.
, and
Stolten
,
D.
,
2003
, “
Ten Years of Operational Experience With a Hydrogen-Based Renewable Energy Supply System
,”
Sol. Energy
,
75
(
6
), pp.
469
478
. 10.1016/j.solener.2003.09.006
24.
Mraoui
,
A.
,
2018
, “
Méthode de Réduction Pour Le Calcul Des Paramètres de L’équation Caractéristique D’un Module Photovoltaïque
,”
Revue des Energies Renouvelables
,
21
(
4
), pp.
505
514
.
You do not currently have access to this content.