Abstract

The high cost and poor performance of small wind turbines make them not widely used. In an attempt to meliorate this situation, the authors propose to investigate alternative airfoils with different chord and pitch angle distributions that permit low manufacturing, installation and maintenance costs, as well as high efficiency. To achieve these goals, two airfoil sections, Gottingen and Joukowski, together with different chord and pitch angle distributions were simulated by using a validated numerical code based on the blade element momentum (BEM) method. The chord geometry includes constant, linear, and elliptic distributions while the twist angle includes constant and linear distributions. The results reveal that the linear pitch distribution reduces the thrust in the intermediate region of the blade and the bending moment at the root and reduces the power coefficient for both rotors. Rotors with elliptic chord distribution show increased forces in the intermediate region. Joukowski based blades with elliptic chord distribution show lower thrust compared with those with linear chord distribution. The linear chord distribution increases the thrust in the intermediate region and reduces it at the tip and root regions. Blades with multiple airfoils show marginal improvement. The Gottingen and Joukowski based rotors have similar annual energy production (AEP). The Joukowski based rotor with linear pitch and linear chord distribution shows better performance at low velocities and easy to manufacture which makes it a good candidate for small power wind turbines.

References

1.
Varol
,
A.
,
İlkılıç
,
C.
, and
Varol
,
Y.
,
2001
, “
Increasing the Efficiency of Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
9
), pp.
809
815
. 10.1016/S0167-6105(01)00069-1
2.
Duquette
,
M. M.
, and
Visser
,
K. D.
,
2003
, “
Numerical Implications of Solidity and Blade Number on Rotor Performance of Horizontal-Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
425
432
. 10.1115/1.1629751
3.
Selig
,
M. S.
, and
McGranahan
,
B. D.
,
2004
, “
Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
126
(
4
), pp.
986
1001
. 10.1115/1.1793208
4.
Hsiao
,
F. B.
,
Bai
,
C. J.
, and
Chong
,
W. T.
,
2013
, “
The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods
,”
Energies
,
6
(
6
), pp.
2784
2803
. 10.3390/en6062784
5.
Manikandan
,
N.
, and
Stalin
,
B.
,
2013
, “
Design of NACA63215 Airfoil for a Wind Turbine
,”
IOSR J. Mech. Civil Eng.
10
(
2
), pp.
18
26
.
6.
Wright
,
A. K.
, and
Wood
,
D. H.
,
2004
, “
The Starting and Low Wind Speed Behaviour of a Small Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
14–15
), pp.
1265
1279
. 10.1016/j.jweia.2004.08.003
7.
Abdelrahman
,
M.
, and
Hassanein
,
A.
,
2012
, “
Aerodynamics of Airfoil Sections and Their Influence on Wind Turbine Design and Performance
,”
Int. J. Eng. Syst. Modell. Simul.
,
4
(
3
), pp.
113
119
. 10.1504/IJESMS.2012.048661
8.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
(
1
), pp.
148
157
. 10.1016/j.apenergy.2018.01.029
9.
Chehouri
,
A.
,
Younes
,
R.
,
Ilinca
,
A.
, and
Perron
,
J.
,
2015
, “
Review of Performance Optimization Techniques Applied to Wind Turbines
,”
Appl. Energy
,
142
(
3
), pp.
361
388
. 10.1016/j.apenergy.2014.12.043
10.
Tenguria
,
N.
,
Mittal
,
N. D.
, and
Ahmed
,
S.
,
2011
, “
Evaluation of Performance of Horizontal Axis Wind Turbine Blades Based on Optimal Rotor Theory
,”
J. Urban Environ. Eng.
,
5
(
1
), pp.
15
23
. 10.4090/juee.2011.v5n1.015023
11.
Schubel
,
P. J.
, and
Crossley
,
R. J.
,
2012
, “
Wind Turbine Blade Design
,”
Energies
,
5
(
9
), pp.
3425
3449
. 10.3390/en5093425
12.
Gu
,
R.
,
Xu
,
J. L.
, &
Yang
,
Y. B
,
2012
, “The Investigation of the Small Bionic Wind Turbine Based on the Seagull Airfoil,”
Advanced Materials Research
,
W.
Pan
,
J.
Ren
, and
Y.
Li
, eds., Vol. 347,
Trans Tech Publications
, pp.
3533
3539
.
13.
Wang
,
L.
,
Tang
,
X.
, and
Liu
,
X.
,
2012
, “
Optimized Chord and Twist Angle Distributions of Wind Turbine Blade Considering Reynolds Number Effects
,”
Wind Energy: Materials, Engineering and Policies (WEMEP)
.
14.
Pourrajabian
,
A.
,
Mirzaei
,
M.
,
Ebrahimi
,
R.
, and
Wood
,
D.
,
2014
, “
Effect of Air Density on the Performance of a Small Wind Turbine Blade: A Case Study in Iran
,”
J. Wind Eng. Ind. Aerodyn.
,
126
(
3
), pp.
1
10
. 10.1016/j.jweia.2014.01.001
15.
Llorente
,
E.
,
Gorostidi
,
A.
,
Jacobs
,
M.
,
Timmer
,
W. A.
,
Munduate
,
X.
, and
Pires
,
O.
,
2014
, “
Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers
,”
Journal of Physics: Conference Series
,
IOP Publishing
, Vol.
524
, No.
1
, p.
012012
.
16.
Li
,
X.
,
Yang
,
K.
,
Zhang
,
L.
, and
Bai
,
J.
,
2017
, “
Experimental Study of Reynolds Number Effects on Performance of Thick CAS Wind Turbine Airfoils
,”
J. Renewable Sustainable Energy
,
9
(
6
), p.
063309
. 10.1063/1.5018744
17.
Yan
,
C.
, and
Archer
,
C. L.
,
2018
, “
Assessing Compressibility Effects on the Performance of Large Horizontal-Axis Wind Turbines
,”
Appl. Energy
,
212
(
2
), pp.
33
45
. 10.1016/j.apenergy.2017.12.020
18.
Refan
,
M.
, and
Hangan
,
H.
,
2012
, “
Aerodynamic Performance of a Small Horizontal Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021013
. 10.1115/1.4005751
19.
Pathike
,
P.
,
Katpradit
,
T.
,
Terdtoon
,
P.
, and
Sakulchangsatjatai
,
P.
,
2013
, “
A New Design of Blade for Small Horizontal-Axis Wind Turbine With Low Wind Speed Operation
,”
Energy Res. J.
,
4
(
1
), pp.
1
7
. 10.3844/erjsp.2013.1.7
20.
Song
,
Q.
, and
Lubitz
,
W. D.
,
2013
, “
BEM Simulation and Performance Analysis of a Small Wind Turbine Rotor
,”
Wind Eng.
,
37
(
4
), pp.
381
399
. 10.1260/0309-524X.37.4.381
21.
Lanzafame
,
R.
, and
Messina
,
M.
,
2007
, “
Fluid Dynamics Wind Turbine Design: Critical Analysis, Optimization and Application of BEM Theory
,”
Renewable Energy
,
32
(
14
), pp.
2291
2305
. 10.1016/j.renene.2006.12.010
22.
Lanzafame
,
R.
, and
Messina
,
M.
,
2009
, “
Optimal Wind Turbine Design to Maximize Energy Production
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
2
), pp.
93
101
. 10.1243/09576509JPE679
23.
Hassanzadeh
,
A.
,
Hassanabad
,
A. H.
, and
Dadvand
,
A.
,
2016
, “
Aerodynamic Shape Optimization and Analysis of Small Wind Turbine Blades Employing the Viterna Approach for Post-Stall Region
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2035
2043
. 10.1016/j.aej.2016.07.008
24.
Sedaghat
,
A.
,
Hassanzadeh
,
A.
,
Jamali
,
J.
,
Mostafaeipour
,
A.
, and
Chen
,
W. H.
,
2017
, “
Determination of Rated Wind Speed for Maximum Annual Energy Production of Variable Speed Wind Turbines
,”
Appl. Energy
,
205
(
11
), pp.
781
789
. 10.1016/j.apenergy.2017.08.079
25.
Sudhamshu
,
A. R.
,
Pandey
,
M. C.
,
Sunil
,
N.
,
Satish
,
N. S.
,
Mugundhan
,
V.
, and
Velamati
,
R. K.
,
2016
, “
Numerical Study of Effect of Pitch Angle on Performance Characteristics of a HAWT
,”
Eng. Sci. Technol. Int. J.
,
19
(
1
), pp.
632
641
. 10.1016/j.jestch.2015.09.010
26.
Purusothaman
,
M.
,
Valarmathi
,
T. N.
, and
Reddy
,
S. P.
,
2016
, “
Selection of Twist and Chord Distribution of Horizontal Axis Wind Turbine in Low Wind Conditions
,”
IOP Conference Series: Materials Science and Engineering
,
Sept.
,
IOP Publishing
, Vol.
149
, No.
1
, p.
012203
.
27.
Drela
,
M.
, and
Youngren
,
H.
,
2016
,
Xfoil, Subsonic Airfoil Development System, 2008
,
Open Source Software
. http://web.mit.edu/drela/Public/web/xfoil, Accessed June 23, 2018.
28.
Glauert
,
H.
,
1924
,
A Generalised Type of Joukowski Aerofoil
,
Aeronautical Research Council
,
Reports and Memorandum, Number 911, January 1924
.
29.
Parezanovic
,
V.
,
Rasuo
,
B.
, &
Adzic
,
M.
,
2006
,
Design of Airfoils for Wind Turbine Blades. French-Serbian European Summer University: Renewable Energy Sources and Environment-Multidisciplinary Aspect
,
Vrnjačka Banja, Serbia
,
Oct.
17–24
.
30.
Tangler
,
J. L.
, and
Somers
,
D. M.
,
1995
,
NREL Airfoil Families for HAWTs (No. NREL/TP-442-7109)
,
National Renewable Energy Lab.
,
Golden, CO
.
31.
Wood
,
D.
,
2011
,
Small Wind Turbines: Analysis, Design, and Application
,
Springer
,
New York
.
32.
Jansen
,
W. A. M.
, and
Smulders
,
P. T.
,
1977
,
Rotor Design for Horizontal Axis Windmills
,
Stuurgroep Windenergie Ontwikkeling
,
Amersfoort
,
SWD Publications
, Vol.
7701
.
33.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2010
,
Wind Energy Explained: Theory, Design and Application
,
John Wiley & Sons
,
New York
.
34.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
,
2001
,
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns (No. NREL/TP-500-29955)
,
National Renewable Energy Lab.
,
Golden, CO
.
35.
Anderson
,
M. B.
,
1981
, “
Experimental and Theoretical Study of Horizontal-Axis Wind Turbines
,”
Doctoral dissertation
,
University of Cambridge
.
36.
Lindenburg
,
C.
,
2003
,
Investigation Into Rotor Blade Aerodynamics
,
Netherlands Society for Energy and the Environment, Paper ECN-C-03-025
.
37.
Hernandez
,
J.
, and
Crespo
,
A.
,
1987
, “
Aerodynamic Calculation of the Performance of Horizontal Axis Wind Turbines and Comparison with Experimental Results
,”
Wind Eng.
, pp.
177
187
.
38.
Amarante
,
O. A.
,
Brower
,
M.
,
Zack
,
J.
,
Eolica
,
C. S. E.
, and
Solutions
,
T.
,
2001
,
Atlas do Potencial Eolico Brasileiro, Centro de Pesquisas de Energia Elétrica/CEPEL
,
Ministerio de Minas e EnergiaEletrobras
,
Brasilia, Brazil
.
You do not currently have access to this content.