Abstract

Various properties of the paraffin have made them compatible to be incorporated in the building materials for improving the latent heat storage capacity of the building envelope. However, the poor thermal conductivity of the paraffin reduces their thermal performance and hence limits their direct application/incorporation in the buildings. In this study, composite mixtures of paraffin and expanded perlite (EP) with an equal weight percent of 49.5 and 47.5, loaded with 1% and 5% of graphene nano-platelets, respectively, were synthesized. The developed samples were characterized uncycled and after 2000 thermal cycles. The results indicate that phase change material (PCM)/expanded perlite/graphene nano-platelets composite shows a significant increment in the thermal conductivity, reduction in the latent heat storage capacity, and a small weight loss. The heat storage/release test depicts that the phase change material/expanded perlite/graphene nano-platelets-5 shows 1.66 and 2.5 times faster heat storage/release rate than phase change material/expanded perlite/graphene nano-platelets-1 and paraffin, respectively. There is no significant change noted after 2000 thermal cycles in phase change material/expanded perlite/graphene nano-platelets-5 and phase change material/expanded perlite/graphene nano-platelets-1 samples, suggesting long-term reliability of the composite PCM. Additionally, thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) testing were also conducted and the results suggest high thermal reliability and good chemical compatibility. These analyses suggest that the phase change material/expanded perlite/graphene nano-platelets composite can become a potential candidate for thermal energy storage.

References

1.
International Energy Agency
,
2017
, “
Energy Efficiency: Buildings the global Exchange for Energy Efficiency Policies, Data and Analysis
,” https://www.iea.org/topics/energyefficiency/buildings/, Accessed January 10, 2019.
2.
International Energy Agency
,
2017
, “
Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector
,”
GLOBAL STATUS REPORT 2017
, https://www.worldgbc.org/sites/default/files/UNEP 188_GABC_en (web).pdf, Accessed January 6, 2019.
3.
Zhou
,
D.
,
Zhao
,
C. Y.
, and
Tian
,
Y.
,
2012
, “
Review on Thermal Energy Storage With Phase Change Materials (PCMs) in Building Applications
,”
Appl. Energy
,
92
, pp.
593
605
. 10.1016/j.apenergy.2011.08.025
4.
Kalnæs
,
S. E.
, and
Jelle
,
B. P.
,
2015
, “
Phase Change Materials and Products for Building Applications: A State-of-the-Art Review and Future Research Opportunities
,”
Energy Build.
,
94
, pp.
150
176
. 10.1016/j.enbuild.2015.02.023
5.
Rathore
,
P. K. S.
, and
Shukla
,
S. K.
,
2019
, “
An Experimental Evaluation of Thermal Behavior of the Building Envelope Using Macroencapsulated PCM for Energy Savings
,”
Renew. Energy
. 10.1016/j.renene.2019.10.130
6.
de Gracia
,
A.
, and
Cabeza
,
L. F.
,
2015
, “
Phase Change Materials and Thermal Energy Storage for Buildings
,”
Energy Build.
,
103
, pp.
414
419
. 10.1016/j.enbuild.2015.06.007
7.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renew. Sustain. Energy Rev.
,
13
(
2
), pp.
318
345
. 10.1016/j.rser.2007.10.005
8.
Rathore
,
P. K. S.
,
Shukla
,
S. K.
, and
Gupta
,
N. K.
,
2020
, “
Potential of Microencapsulated PCM for Energy Savings in Buildings: A Critical Review
,”
Sustain. Cities Soc.
,
53
, p.
101884
. 10.1016/j.scs.2019.101884
9.
Rathore
,
P. K. S.
,
2019
. “An Experimental Study on Solar Water Heater Integrated With Phase Change Material,”
Advances in Fluid and Thermal Engineering
,
Pankaj Saha
,
P. M. V.
Subbarao
, and
B. S.
Sikarwar
, eds.,
Springer
,
Singapore
, pp.
347
356
.
10.
Shadnia
,
R.
,
Zhang
,
L.
, and
Li
,
P.
,
2015
, “
Experimental Study of Geopolymer Mortar With Incorporated PCM
,”
Constr. Build. Mater.
,
84
, pp.
95
102
. 10.1016/j.conbuildmat.2015.03.066
11.
Ling
,
T. C.
, and
Poon
,
C. S.
,
2013
, “
Use of Phase Change Materials for Thermal Energy Storage in Concrete: An Overview
,”
Constr. Build. Mater.
,
46
, pp.
55
62
. 10.1016/j.conbuildmat.2013.04.031
12.
Memon
,
S. A.
,
2014
, “
Phase Change Materials Integrated in Building Walls: A State of the Art Review
,”
Renew. Sustain. Energy Rev.
,
31
, pp.
870
906
. 10.1016/j.rser.2013.12.042
13.
Rathore
,
P. K. S.
, and
Shukla
,
S. K.
,
2019
, “
Potential of Macroencapsulated PCM for Thermal Energy Storage in Buildings: A Comprehensive Review
,”
Constr. Build. Mater.
,
225
, pp.
723
744
. 10.1016/j.conbuildmat.2019.07.221
14.
Jiesheng
,
L.
,
Yuanyuan
,
Y.
, and
Xiang
,
H.
,
2016
, “
Research on the Preparation and Properties of Lauric Acid/Expanded Perlite Phase Change Materials
,”
Energy Build.
,
110
, pp.
108
111
. 10.1016/j.enbuild.2015.10.043
15.
Zhang
,
J.
,
Guan
,
X.
,
Song
,
X.
,
Hou
,
H.
,
Yang
,
Z.
, and
Zhu
,
J.
,
2015
, “
Preparation and Properties of Gypsum Based Energy Storage Materials With Capric Acid–Palmitic Acid/Expanded Perlite Composite PCM
,”
Energy Build.
,
92
, pp.
155
160
. 10.1016/j.enbuild.2015.01.063
16.
Wen
,
R.
,
Huang
,
Z.
,
Huang
,
Y.
,
Zhang
,
X.
,
Min
,
X.
,
Fang
,
M.
, and
Wu
,
X.
,
2016
, “
Synthesis and Characterization of Lauric Acid/Expanded Vermiculite as Form-Stabilized Thermal Energy Storage Materials
,”
Energy Build.
,
116
, pp.
677
683
. 10.1016/j.enbuild.2016.01.023
17.
Zhang
,
H.
,
Zhu
,
J.
,
Zhou
,
W.
,
Liu
,
F.
, and
Li
,
K.
,
2019
, “
Synthesis and Thermal Properties of a Capric Acid-Modified Expanded Vermiculite Phase Change Material
,”
J. Mater. Sci.
,
54
(
3
), pp.
2231
2240
. 10.1007/s10853-018-2988-7
18.
Fu
,
X.
,
Liu
,
Z.
,
Xiao
,
Y.
,
Wang
,
J.
, and
Lei
,
J.
,
2015
, “
Preparation and Properties of Lauric Acid/Diatomite Composites as Novel Form-Stable Phase Change Materials for Thermal Energy Storage
,”
Energy Build.
,
104
, pp.
244
249
. 10.1016/j.enbuild.2015.06.059
19.
Fu
,
X.
,
Liu
,
Z.
,
Wu
,
B.
,
Wang
,
J.
, and
Lei
,
J.
,
2016
, “
Preparation and Thermal Properties of Stearic Acid/Diatomite Composites as Form-Stable Phase Change Materials for Thermal Energy Storage Via Direct Impregnation Method
,”
J. Therm. Anal. Calorim.
,
123
(
2
), pp.
1173
1181
. 10.1007/s10973-015-5030-1
20.
Acurio
,
K.
,
Chico-Proano
,
A.
,
Martínez-Gómez
,
J.
,
Ávila
,
C. F.
,
Ávila
,
Á.
, and
Orozco
,
M.
,
2018
, “
Thermal Performance Enhancement of Organic Phase Change Materials Using Spent Diatomite From the Palm Oil Bleaching Process as Support
,”
Constr. Build. Mater.
,
192
, pp.
633
642
. 10.1016/j.conbuildmat.2018.10.148
21.
Gulfam
,
R.
,
Zhang
,
P.
, and
Meng
,
Z.
,
2019
, “
Advanced Thermal Systems Driven by Paraffin-Based Phase Change Materials—A Review
,”
Appl. Energy
,
238
, pp.
582
611
. 10.1016/j.apenergy.2019.01.114
22.
Ahmed
,
S. F.
,
Khalid
,
M.
,
Rashmi
,
W.
,
Chan
,
A.
, and
Shahbaz
,
K.
,
2017
, “
Recent Progress in Solar Thermal Energy Storage Using Nanomaterials
,”
Renew. Sustain. Energy Rev.
,
67
, pp.
450
460
. 10.1016/j.rser.2016.09.034
23.
Khan
,
Z.
,
Khan
,
Z.
, and
Ghafoor
,
A.
,
2016
, “
A Review of Performance Enhancement of PCM Based Latent Heat Storage System Within the Context of Materials, Thermal Stability and Compatibility
,”
Energy Convers. Manage.
,
115
, pp.
132
158
. 10.1016/j.enconman.2016.02.045
24.
Kibria
,
M. A.
,
Anisur
,
M. R.
,
Mahfuz
,
M. H.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2015
, “
A Review on Thermophysical Properties of Nanoparticle Dispersed Phase Change Materials
,”
Energy Convers. Manage.
,
95
, pp.
69
89
. 10.1016/j.enconman.2015.02.028
25.
Karaipekli
,
A.
,
Biçer
,
A.
,
Sarı
,
A.
, and
Tyagi
,
V. V.
,
2017
, “
Thermal Characteristics of Expanded Perlite/Paraffin Composite Phase Change Material With Enhanced Thermal Conductivity Using Carbon Nanotubes
,”
Energy Convers. Manage.
,
134
, pp.
373
381
. 10.1016/j.enconman.2016.12.053
26.
Wu
,
X.
,
Wang
,
C.
,
Wang
,
Y.
, and
Zhu
,
Y.
,
2019
, “
Experimental Study of Thermo-Physical Properties and Application of Paraffin-Carbon Nanotubes Composite Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
140
, pp.
671
677
. 10.1016/j.ijheatmasstransfer.2019.06.008
27.
Zhang
,
X.
,
Wen
,
R.
,
Huang
,
Z.
,
Tang
,
C.
,
Huang
,
Y.
,
Liu
,
Y.
, and
Xu
,
Y.
,
2017
, “
Enhancement of Thermal Conductivity by the Introduction of Carbon Nanotubes as a Filler in Paraffin/Expanded Perlite Form-Stable Phase-Change Materials
,”
Energy Build.
,
149
, pp.
463
470
. 10.1016/j.enbuild.2017.05.037
28.
Sarı
,
A.
,
Bicer
,
A.
,
Al-Ahmed
,
A.
,
Al-Sulaiman
,
F. A.
,
Zahir
,
M. H.
, and
Mohamed
,
S. A.
,
2018
, “
Silica Fume/Capric Acid-Palmitic Acid Composite Phase Change Material Doped With CNTs for Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
179
, pp.
353
361
. 10.1016/j.solmat.2017.12.036
29.
Sarı
,
A.
,
Bicer
,
A.
,
Al-Sulaiman
,
F. A.
,
Karaipekli
,
A.
, and
Tyagi
,
V. V.
,
2018
, “
Diatomite/CNTs/PEG Composite PCMs With Shape-Stabilized and Improved Thermal Conductivity: Preparation and Thermal Energy Storage Properties
,”
Energy Build.
,
164
, pp.
166
175
. 10.1016/j.enbuild.2018.01.009
30.
Ramakrishnan
,
S.
,
Wang
,
X.
, and
Sanjayan
,
J.
,
2019
, “
Effects of Various Carbon Additives on the Thermal Storage Performance of Form-Stable PCM Integrated Cementitious Composites
,”
Appl. Therm. Eng.
,
148
, pp.
491
501
. 10.1016/j.applthermaleng.2018.11.025
31.
Cui
,
Y.
,
Liu
,
C.
,
Hu
,
S.
, and
Yu
,
X.
,
2011
, “
The Experimental Exploration of Carbon Nanofiber and Carbon Nanotube Additives on Thermal Behavior of Phase Change Materials
,”
Sol. Energy Mater. Sol. Cells
,
95
(
4
), pp.
1208
1212
. 10.1016/j.solmat.2011.01.021
32.
Fan
,
L. W.
,
Fang
,
X.
,
Wang
,
X.
,
Zeng
,
Y.
,
Xiao
,
Y. Q.
,
Yu
,
Z. T.
, and
Cen
,
K. F.
,
2013
, “
Effects of Various Carbon Nanofillers on the Thermal Conductivity and Energy Storage Properties of Paraffin-Based Nanocomposite Phase Change Materials
,”
Appl. Energy
,
110
, pp.
163
172
. 10.1016/j.apenergy.2013.04.043
33.
Mehrali
,
M.
,
Latibari
,
S. T.
,
Mehrali
,
M.
,
Mahlia
,
T. M. I.
, and
Metselaar
,
H. S. C.
,
2014
, “
Effect of Carbon Nanospheres on Shape Stabilization and Thermal Behavior of Phase Change Materials for Thermal Energy Storage
,”
Energy Convers. Manage.
,
88
, pp.
206
213
. 10.1016/j.enconman.2014.08.014
34.
Motahar
,
S.
,
Alemrajabi
,
A. A.
, and
Khodabandeh
,
R.
,
2016
, “
Enhanced Thermal Conductivity of n-Octadecane Containing Carbon-Based Nanomaterials
,”
Heat Mass Transfer
,
52
(
8
), pp.
1621
1631
. 10.1007/s00231-015-1678-0
35.
Ho
,
C. J.
, and
Gao
,
J. Y.
,
2009
, “
Preparation and Thermophysical Properties of Nanoparticle-in-Paraffin Emulsion as Phase Change Material
,”
Int. Commun. Heat Mass Transfer
,
36
(
5
), pp.
467
470
. 10.1016/j.icheatmasstransfer.2009.01.015
36.
Qian
,
T.
,
Li
,
J.
,
Min
,
X.
,
Guan
,
W.
,
Deng
,
Y.
, and
Ning
,
L.
,
2015
, “
Enhanced Thermal Conductivity of PEG/Diatomite Shape-Stabilized Phase Change Materials With Ag Nanoparticles for Thermal Energy Storage
,”
J. Mater. Chem. A
,
3
(
16
), pp.
8526
8536
. 10.1039/C5TA00309A
37.
Fang
,
X.
,
Fan
,
L. W.
,
Ding
,
Q.
,
Wang
,
X.
,
Yao
,
X. L.
,
Hou
,
J. F.
, and
Cen
,
K. F.
,
2013
, “
Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets
,”
Energy Fuels
,
27
(
7
), pp.
4041
4047
. 10.1021/ef400702a
38.
Li
,
M.
,
2013
, “
A Nano-Graphite/Paraffin Phase Change Material With High Thermal Conductivity
,”
Appl. Energy
,
106
, pp.
25
30
. 10.1016/j.apenergy.2013.01.031
39.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Zeng
,
Y.
,
Lu
,
Q.
, and
Yu
,
Z. T.
,
2014
, “
Heat Transfer During Melting of Graphene-Based Composite Phase Change Materials Heated From Below
,”
Int. J. Heat Mass Transfer
,
79
, pp.
94
104
. 10.1016/j.ijheatmasstransfer.2014.08.001
40.
Kim
,
S.
,
Paek
,
S.
,
Jeong
,
S. G.
,
Lee
,
J. H.
, and
Kim
,
S.
,
2014
, “
Thermal Performance Enhancement of Mortar Mixed With Octadecane/XGnP SSPCM to Save Building Energy Consumption
,”
Sol. Energy Mater. Sol. Cells
,
122
, pp.
257
263
. 10.1016/j.solmat.2013.12.015
41.
Song
,
S.
,
Qiu
,
F.
,
Zhu
,
W.
,
Guo
,
Y.
,
Zhang
,
Y.
,
Ju
,
Y.
, and
Xiong
,
C.
,
2019
, “
Polyethylene Glycol/Halloysite@ Ag Nanocomposite PCM for Thermal Energy Storage: Simultaneously High Latent Heat and Enhanced Thermal Conductivity
,”
Sol. Energy Mater. Sol. Cells
,
193
, pp.
237
245
. 10.1016/j.solmat.2019.01.023
42.
Li
,
M.
,
Wu
,
Z.
, and
Tan
,
J.
,
2012
, “
Properties of Form-Stable Paraffin/Silicon Dioxide/Expanded Graphite Phase Change Composites Prepared by Sol–Gel Method
,”
Appl. Energy
,
92
, pp.
456
461
. 10.1016/j.apenergy.2011.11.018
43.
Mei
,
D.
,
Zhang
,
B.
,
Liu
,
R.
,
Zhang
,
H.
, and
Liu
,
J.
,
2011
, “
Preparation of Stearic Acid/Halloysite Nanotube Composite as Form-Stable PCM for Thermal Energy Storage
,”
Int. J. Energy Res.
,
35
(
9
), pp.
828
834
. 10.1002/er.1874
44.
Lu
,
Z.
,
Xu
,
B.
,
Zhang
,
J.
,
Zhu
,
Y.
,
Sun
,
G.
, and
Li
,
Z.
,
2014
, “
Preparation and Characterization of Expanded Perlite/Paraffin Composite as Form-Stable Phase Change Material
,”
Sol. Energy
,
108
, pp.
460
466
. 10.1016/j.solener.2014.08.008
45.
Li
,
C.
, and
Yang
,
H.
,
2013
, “
Expanded Vermiculite/Paraffin Composite as a Solar Thermal Energy Storage Material
,”
J. Am. Ceram. Soc.
,
96
(
9
), pp.
2793
2798
. 10.1111/jace.12504
46.
Karaıpeklı
,
A.
,
Sarı
,
A.
, and
Kaygusuz
,
K.
,
2009
, “
Thermal Characteristics of Paraffin/Expanded Perlite Composite for Latent Heat Thermal Energy Storage
,”
Energy Sources Part A
,
31
(
10
), pp.
814
823
. 10.1080/15567030701752768
47.
Tang
,
B.
,
Qiu
,
M.
, and
Zhang
,
S.
,
2012
, “
Thermal Conductivity Enhancement of PEG/SiO2 Composite PCM by In Situ Cu Doping
,”
Sol. Energy Mater. Sol. Cells
,
105
, pp.
242
248
. 10.1016/j.solmat.2012.06.012
48.
Ramakrishnan
,
S.
,
Wang
,
X.
, and
Sanjayan
,
J.
,
2018
, “
Thermal Enhancement of Paraffin/Hydrophobic Expanded Perlite Granular Phase Change Composite Using Graphene Nanoplatelets
,”
Energy Build.
,
169
, pp.
206
215
. 10.1016/j.enbuild.2018.03.053
49.
Li
,
X.
,
Wei
,
H.
,
Lin
,
X.
, and
Xie
,
X.
,
2016
, “
Preparation of Stearic Acid/Modified Expanded Vermiculite Composite Phase Change Material With Simultaneously Enhanced Thermal Conductivity and Latent Heat
,”
Sol. Energy Mater. Sol. Cells
,
155
, pp.
9
13
. 10.1016/j.solmat.2016.04.057
50.
Qi
,
G. Q.
,
Yang
,
J.
,
Bao
,
R. Y.
,
Liu
,
Z. Y.
,
Yang
,
W.
,
Xie
,
B. H.
, and
Yang
,
M. B.
,
2015
, “
Enhanced Comprehensive Performance of Polyethylene Glycol Based Phase Change Material With Hybrid Graphene Nanomaterials for Thermal Energy Storage
,”
Carbon
,
88
, pp.
196
205
. 10.1016/j.carbon.2015.03.009
You do not currently have access to this content.