Abstract

In this paper, the concept of heat extraction from the gradient zone (GZ) in solar ponds has been analyzed in a more realistic manner to overcome the drawbacks of previously conducted studies. For this purpose, a net heat transfer coefficient has been invoked to investigate the heat transfer occurring from the GZ to the exchanger installed in this zone, in addition to the storage zone (SZ). Analytical solutions for temperature profiles in the GZ and the corresponding exchanger have been obtained which are further used to investigate various aspects of the thermal performance of the pond. The consideration of realistic heat transfer across the GZ exchanger reveals that the ideal thickness of GZ yielding maximum power output is always under-predicted by the idealized assumption of the literature. Unlike intuitive perception, the conventional assumption of an infinite heat transfer coefficient does not affect the pond stability because, for all practical purposes, the critical salt diffusion rate predicted by it is always larger than the actual critical value required for ensuring stable pond operation. However, as expected, the rate of exergy destruction caused by the pond’s operation is found to be underestimated by the idealized assumption. This study provides a useful analytical tool to make more realistic predictions on various performance parameters of solar ponds utilizing the heat stored in their GZ.

References

1.
Panahi
,
Z.
,
Batty
,
J. C.
, and
Riley
,
J. P.
,
1983
, “
Numerical Simulation of the Performance of a Salt-Gradient Solar Pond
,”
ASME J. Sol. Energy Eng.
,
105
(
4
), pp.
369
374
. 10.1115/1.3266393
2.
Ortabasi
,
U.
,
Dyksterhuis
,
F. H.
, and
Kaushika
,
N. D.
,
1983
, “
Honey Comb Stabilized Saltless Solar Pond
,”
Sol. Energy
,
31
(
2
), pp.
229
231
. 10.1016/0038-092X(83)90086-5
3.
Newell
,
T. A.
,
1983
, “
Simulation of a Solar Pond With a Stratified Storage Zone
,”
ASME J. Sol. Energy Eng.
,
105
(
4
), pp.
363
368
. 10.1115/1.3266392
4.
Prasad
,
R.
, and
Rao
,
D. P.
,
1993
, “
Feasibility Studies on the Enhancement of Energy Storage in the Ground Beneath Solar Ponds
,”
Sol. Energy
,
50
(
2
), pp.
135
144
. 10.1016/0038-092X(93)90085-3
5.
Al-Juwayhel
,
F.
, and
El-Refaee
,
M. M.
,
1998
, “
Thermal Performance of a Combined Packed Bed–Solar Pond System—A Numerical Study
,”
Appl. Therm. Eng.
,
18
(
12
), pp.
1207
1223
. 10.1016/S1359-4311(97)00101-4
6.
Kooi
,
C. F.
,
1979
, “
The Steady State Salt Gradient Solar Pond
,”
Sol. Energy
,
23
(
1
), pp.
37
45
. 10.1016/0038-092X(79)90041-0
7.
Bansal
,
P. K.
, and
Kaushik
,
N. D.
,
1981
, “
Salt Gradient Stabilized Solar Pond Collector
,”
Energy Convers. Manag
,
21
(
1
), pp.
81
95
. 10.1016/0196-8904(81)90010-8
8.
Wang
,
Y. F.
, and
Akbarzadeh
,
A.
,
1982
, “
A Study on the Transient Behaviour of Solar Ponds
,”
Energy
,
7
(
12
), pp.
1005
1017
. 10.1016/0360-5442(82)90084-6
9.
Rao
,
S. K.
, and
Kaushika
,
N. D.
,
1983
, “
Analytical Model of Solar Pond With Heat Exchanger
,”
Energy Convers. Manag.
,
23
(
1
), pp.
23
31
. 10.1016/0196-8904(83)90004-3
10.
Andrews
,
J.
, and
Akbarzadeh
,
A.
,
2005
, “
Enhancing the Thermal Efficiency of Solar Ponds by Extracting Heat From the Gradient Layer
,”
Sol. Energy
,
78
(
6
), pp.
704
716
. 10.1016/j.solener.2004.09.012
11.
Angeli
,
C.
,
Leonardi
,
E.
, and
Maciocco
,
L.
,
2006
, “
A Computational Study of Salt Diffusion and Heat Extraction in Solar Pond Plants
,”
Sol. Energy
,
80
(
11
), pp.
1498
1508
. 10.1016/j.solener.2005.10.015
12.
Kurt
,
H.
,
Ozkaymak
,
M.
, and
Binark
,
A. K.
,
2006
, “
Experimental and Numerical Analysis of Sodium-Carbonate Salt Gradient Solar-Pond Performance Under Simulated Solar-Radiation
,”
Appl. Energy
,
83
(
4
), pp.
324
342
. 10.1016/j.apenergy.2005.03.001
13.
Jaefarzadeh
,
M. R.
,
2006
, “
Heat Extraction From a Salinity-Gradient Solar Pond Using in Pond Heat Exchanger
,”
Appl. Therm. Eng.
,
26
(
16
), pp.
1858
1865
. 10.1016/j.applthermaleng.2006.01.022
14.
Velmurugan
,
V.
, and
Srithar
,
K.
,
2007
, “
Solar Stills Integrated With a Mini Solar Pond—Analytical Simulation and Experimental Validation
,”
Desalination
,
216
(
1–3
), pp.
232
241
. 10.1016/j.desal.2006.12.012
15.
Dah
,
M. M. O.
,
Ouni
,
M.
,
Guizani
,
A.
, and
Belghith
,
A.
,
2010
, “
The Influence of the Heat Extraction Mode on the Performance and Stability of a Mini Solar Pond
,”
Appl. Energy
,
87
(
10
), pp.
3005
3010
. 10.1016/j.apenergy.2010.04.004
16.
Tundee
,
S.
,
Terdtoon
,
P.
,
Sakulchangsatjatai
,
P.
,
Singh
,
R.
, and
Akbarzadeh
,
A.
,
2010
, “
Heat Extraction From Salinity-Gradient Solar Ponds Using Heat Pipe Heat Exchangers
,”
Sol. Energy
,
84
(
9
), pp.
1706
1716
. 10.1016/j.solener.2010.04.010
17.
Leblanc
,
J.
,
Akbarzadeh
,
A.
,
Andrews
,
J.
,
Lu
,
H.
, and
Golding
,
P.
,
2011
, “
Heat Extraction Methods From Salinity-Gradient Solar Ponds and Introduction of a Novel System of Heat Extraction for Improved Efficiency
,”
Sol. Energy
,
85
(
12
), pp.
3103
3142
. 10.1016/j.solener.2010.06.005
18.
Date
,
A.
,
Yaakob
,
Y.
,
Date
,
A.
,
Krishnapillai
,
S.
, and
Akbarzadeh
,
A.
,
2013
, “
Heat Extraction From Non-Convective and Lower Convective Zones of the Solar Pond: A Transient Study
,”
Sol. Energy
,
97
, pp.
517
528
. 10.1016/j.solener.2013.09.013
19.
Suárez
,
F.
,
Ruskowitz
,
J. A.
,
Tyler
,
S. W.
, and
Childress
,
A. E.
,
2015
, “
Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds
,”
Appl. Energy
,
158
, pp.
532
539
. 10.1016/j.apenergy.2015.08.110
20.
Ganguly
,
S.
,
Date
,
A.
, and
Akbarzadeh
,
A.
,
2017
, “
Heat Recovery From Ground Below the Solar Pond
,”
Sol. Energy
,
155
, pp.
1254
1260
. 10.1016/j.solener.2017.07.068
21.
Ganguly
,
S.
,
Date
,
A.
, and
Akbarzadeh
,
A.
,
2018
, “
Effectiveness of Bottom Insulation of a Salinity Gradient Solar Pond
,”
ASME J. Sol. Energy Eng.
,
140
(
4
), p.
044502
. 10.1115/1.4039416
22.
Verma
,
S.
, and
Das
,
R.
,
2019
, “
Wall Profile Optimisation of a Salt Gradient Solar Pond Using a Generalized Model
,”
Sol. Energy
,
184
, pp.
356
371
. 10.1016/j.solener.2019.04.003
23.
Verma
,
S.
, and
Das
,
R.
,
2019
, “
Concept of Triple Heat Exchanger-Assisted Solar Pond Through an Improved Analytical Model
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051003
. 10.1115/1.4043127
24.
Rabl
,
A.
, and
Nielsen
,
C. E.
,
1975
, “
Solar Ponds for Space Heating
,”
Sol. Energy
,
17
(
1
), pp.
1
12
. 10.1016/0038-092X(75)90011-0
25.
Srinivasan
,
J.
, and
Guha
,
A.
,
1987
, “
Concentration Profile in the Gradient Zone of Small Solar Ponds
,”
Sol. Energy
,
38
(
2
), pp.
135
136
. 10.1016/0038-092X(87)90036-3
26.
Dah
,
M. M. O.
,
Ouni
,
M.
,
Guizani
,
A.
, and
Belghith
,
A.
,
2005
, “
Study of Temperature and Salinity Profiles Development of Solar Pond in Laboratory
,”
Desalination
,
183
(
1–3
), pp.
179
185
. 10.1016/j.desal.2005.03.034
You do not currently have access to this content.