Abstract

Sagar Island which is located in the world's largest delta, the Sunderban, in the eastern coast of India faces severe power crunch. Due to its isolated location, the power infrastructure is underdeveloped. This has led to very unreliable power supply and frequent power cuts. The island being economically weak, power is inaccessible to most of its residents. Thus, the per unit energy consumption of the area is low and it has led to the lowering of the human development index of the area. However, Sagar Island, owing to its location, has huge solar and wind power potential. This paper discusses the prospect of developing a solar-wind hybrid power plant to supply power to the area. The developed hybrid renewable energy system (HRES) power plant will provide uninterrupted power to the island. Results show that the levelized cost of electricity (LCOE) from the proposed power plant is 0.03707 $/kWh, which is lower than the LCOE from the available grid. Lowering the cost of electricity will make electricity accessible to most of the inhabitants of the island. This will, in turn, increase the per unit energy consumption and hence the human development index. The proposed power plant will also help the environment by reducing CO2 emissions by 1894.08 tonnes annually. It will also save 587.39 tonnes of coal in its lifetime. Hence, the HRES power plant will make power accessible and also help Sagar Island to become a renewable fed “Green Island.”

References

1.
Saheli
,
M. A.
,
Fazelpour
,
F.
,
Soltani
,
N.
, and
Rosen
,
M. A.
,
2019
, “
Performance Analysis of a Photovoltaic/Wind/Diesel Hybrid Power Generation System for Domestic Utilization in Winnipeg, Manitoba, Canada
,”
Environ. Progr. Sustainable Energy
,
38
(
2
), pp.
548
562
. 10.1002/ep.12939
2.
Bajpai
,
P.
, and
Dash
,
V.
,
2012
, “
Hybrid Renewable Energy Systems for Power Generation in Stand-Alone Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
2926
2939
. 10.1016/j.rser.2012.02.009
3.
Fadaeenejad
,
M.
,
Radzi
,
M. A. M.
,
AbKadir
,
M. Z. A.
, and
Hizam
,
H.
,
2014
, “
Assessment of Hybrid Renewable Power Sources for Rural Electrification in Malaysia
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
299
305
. 10.1016/j.rser.2013.10.003
4.
Fathabadi
,
H.
,
2018
, “
Novel High-Efficient Large-Scale Stand-Alone Solar/Wind Hybrid Power Source Equipped With Battery Bank Used as Storage Device
,”
J. Energy Storage
,
17
, pp.
485
495
. 10.1016/j.est.2018.04.008
5.
Eftekharnejad
,
S.
,
Vittal
,
V.
,
Heydt
,
G. T.
,
Keel
,
B.
, and
Loehr
,
J.
,
2013
, “
Small Signal Stability Assessment of Power Systems With Increased Penetration of Photovoltaic Generation: A Case Study
,”
IEEE Trans. Sustainable Energy
,
4
(
4
), pp.
960
967
. 10.1109/TSTE.2013.2259602
6.
Tan
,
Q.
,
Ding
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China
,”
Energies
,
10
(
9
), p.
1405
. 10.3390/en10091405
7.
Chang
,
J. W.
,
Lee
,
G. S.
,
Moon
,
H. J.
,
Glick
,
M. B.
, and
Moon
,
S. I.
,
2019
, “
Coordinated Frequency and State-of-Charge Control With Multi-Battery Energy Storage Systems and Diesel Generators in an Isolated Microgrid
,”
Energies
,
12
(
9
), p.
1614
. 10.3390/en12091614
8.
Mollenhauer
,
E.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2018
, “
Increasing the Flexibility of Combined Heat and Power Plants With Heat Pumps and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020907
. 10.1115/1.4038461
9.
Lan
,
H.
,
Bai
,
Y.
,
Wen
,
S.
,
Yu
,
D.
,
Hong
,
Y. Y.
,
Dai
,
J.
, and
Cheng
,
P.
,
2016
, “
Modeling and Stability Analysis of Hybrid PV/Diesel/ess in Ship Power System
,”
Inventions
,
1
(
1
), p.
5
. 10.3390/inventions1010005
10.
Ou
,
T. C.
,
2018
, “
Design of a Novel Voltage Controller for Conversion of Carbon Dioxide Into Clean Fuels Using the Integration of a Vanadium Redox Battery With Solar Energy
,”
Energies
,
11
(
3
), p.
524
. 10.3390/en11030524
11.
Liu
,
G.
,
Li
,
M.
,
Zhou
,
B.
,
Chen
,
Y.
, and
Liao
,
S.
,
2018
, “
General Indicator for Techno-Economic Assessment of Renewable Energy Resources
,”
Energy Convers. Manage.
,
156
, pp.
416
426
. 10.1016/j.enconman.2017.11.054
12.
Buonomano
,
A.
,
Calise
,
F.
,
d'Accadia
,
M. D.
, and
Vicidomini
,
M.
,
2018
, “
A Hybrid Renewable System Based on Wind and Solar Energy Coupled With an Electrical Storage: Dynamic Simulation and Economic Assessment
,”
Energy
,
155
, pp.
174
189
. 10.1016/j.energy.2018.05.006
13.
Ayadi
,
O.
,
Al-Assad
,
R.
, and
Al Asfar
,
J.
,
2018
, “
Techno-Economic Assessment of a Grid Connected Photovoltaic System for the University of Jordan
,”
Sustain. Cities Soc.
,
39
, pp.
93
98
. 10.1016/j.scs.2018.02.011
14.
Ou
,
T. C.
, and
Hong
,
C. M.
,
2014
, “
Dynamic Operation and Control of Microgrid Hybrid Power Systems
,”
Energy
,
66
, pp.
314
323
. 10.1016/j.energy.2014.01.042
15.
Marzband
,
M.
,
Azarinejadian
,
F.
,
Savaghebi
,
M.
, and
Guerrero
,
J. M.
,
2015
, “
An Optimal Energy Management System for Islanded Microgrids Based on Multiperiod Artificial bee Colony Combined With Markov Chain
,”
IEEE Syst. J.
,
11
(
3
), pp.
1712
1722
. 10.1109/JSYST.2015.2422253
16.
Bui
,
V. H.
,
Hussain
,
A.
, and
Kim
,
H. M.
,
2017
, “
Optimal Operation of Microgrids Considering Auto-Configuration Function Using Multiagent System
,”
Energies
,
10
(
10
), p.
1484
. 10.3390/en10101484
17.
Ou
,
T. C.
,
2012
, “
A Novel Unsymmetrical Faults Analysis for Microgrid Distribution Systems
,”
Int. J. Electr. Power Energy Syst.
,
43
(
1
), pp.
1017
1024
. 10.1016/j.ijepes.2012.05.012
18.
Guo
,
W. M.
,
Mu
,
L. H.
, and
Zhang
,
X.
,
2016
, “
Fault Models of Inverter-Interfaced Distributed Generators Within a Low-Voltage Microgrid
,”
IEEE Trans. Power Delivery
,
32
(
1
), pp.
453
461
. 10.1109/TPWRD.2016.2541344
19.
Ou
,
T. C.
,
2013
, “
Ground Fault Current Analysis With a Direct Building Algorithm for Microgrid Distribution
,”
Int. J. Electr. Power Energy Syst.
,
53
, pp.
867
875
. 10.1016/j.ijepes.2013.06.005
20.
Ou
,
T. C.
,
Lu
,
K. H.
, and
Huang
,
C. J.
,
2017
, “
Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)
,”
Energies
,
10
(
4
), p.
488
. 10.3390/en10040488
21.
Central Electricity Regulatory Commission (CERC), Ministry of Power, Government of India
,
2017
, “
Terms and Conditions for Tariff Determination From Renewable Energy Sources, Regulations, 2017
,”
New Delhi, India
.
22.
Central Electricity Authority, Government of India (CEA)
,
2018
, “
Annual Report, 2017–2018 of Central Electricity Authority
,”
New Delhi, India
.
23.
Al-Ghussain
,
L.
,
Taylan
,
O.
, and
Fahrioglu
,
M.
,
2018
, “
Sizing of a Photovoltaic-Wind-Oil Shale Hybrid System: Case Analysis in Jordan
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011002
. 10.1115/1.4038048
24.
Das
,
U. K.
,
Tey
,
K. S.
,
Seyedmahmoudian
,
M.
,
Mekhilef
,
S.
,
Idris
,
M. Y. I.
,
Van Deventer
,
W.
,
Horan
,
B.
, and
Stojcevski
,
A.
,
2018
, “
Forecasting of Photovoltaic Power Generation and Model Optimization: A Review
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
912
928
. 10.1016/j.rser.2017.08.017
25.
Sainthiya
,
H.
,
Beniwal
,
N. S.
, and
Garg
,
N.
,
2018
, “
Efficiency Improvement of a Photovoltaic Module Using Front Surface Cooling Method in Summer and Winter Conditions
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061009
. 10.1115/1.4040238
26.
Vargas
,
S. A.
,
Esteves
,
G. R. T.
,
Maçaira
,
P. M.
,
Bastos
,
B. Q.
,
Oliveira
,
F. L. C.
, and
Souza
,
R. C.
,
2019
, “
Wind Power Generation: A Review and a Research Agenda
,”
J. Cleaner Prod.
,
218
, pp.
850
870
. 10.1016/j.jclepro.2019.02.015
27.
Sajed Sadati
,
S. M.
,
Jahani
,
E.
,
Taylan
,
O.
, and
Baker
,
D. K.
,
2018
, “
Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011006
. 10.1115/1.4038466
28.
Hussain Baloch
,
M.
,
Ishak
,
D.
,
Tahir Chaudary
,
S.
,
Ali
,
B.
,
Asghar Memon
,
A.
, and
Ahmed Jumani
,
T.
,
2019
, “
Wind Power Integration: An Experimental Investigation for Powering Local Communities
,”
Energies
,
12
(
4
), p.
621
. 10.3390/en12040621
29.
Tu
,
Q.
,
Betz
,
R.
,
Mo
,
J.
,
Fan
,
Y.
, and
Liu
,
Y.
,
2019
, “
Achieving Grid Parity of Wind Power in China–Present Levelized Cost of Electricity and Future Evolution
,”
Appl. Energy
,
250
, pp.
1053
1064
. 10.1016/j.apenergy.2019.05.039
30.
Shea
,
R. P.
, and
Ramgolam
,
Y. K.
,
2019
, “
Applied Levelized Cost of Electricity for Energy Technologies in a Small Island Developing State: A Case Study in Mauritius
,”
Renewable Energy
,
132
, pp.
1415
1424
. 10.1016/j.renene.2018.09.021
31.
Sikder
,
P. S.
, and
Pal
,
N.
,
2019
, “
Feasibility Assessment of Distributed Generation Systems in Sagar Island, West Bengal, India
,”
Curr. Sci.
,
116
(
8
), pp.
1381
1386
. 10.18520/cs/v116/i8/1381-1386
32.
Dehwah
,
A. H.
, and
Krarti
,
M.
,
2019
, “
Optimal Hybrid Power Energy Systems for Residential Communities in Saudi Arabia
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061002
. 10.1115/1.4043633
33.
Han
,
X.
,
Liang
,
Y.
,
Ai
,
Y.
, and
Li
,
J.
,
2018
, “
Economic Evaluation of a PV Combined Energy Storage Charging Station Based on Cost Estimation of Second-Use Batteries
,”
Energy
,
165
, pp.
326
339
. 10.1016/j.energy.2018.09.022
34.
Budzianowski
,
W. M.
, and
Postawa
,
K.
,
2017
, “
Renewable Energy From Biogas With Reduced Carbon Dioxide Footprint: Implications of Applying Different Plant Configurations and Operating Pressures
,”
Renewable Sustainable Energy Rev.
,
68
, pp.
852
868
. 10.1016/j.rser.2016.05.076
35.
Xie
,
W.
,
Chen
,
X.
,
Ma
,
J.
,
Liu
,
D.
,
Cai
,
T.
, and
Wu
,
Y.
,
2019
, “
Energy Analyses and Process Integration of Coal-Fired Power Plant with CO2 Capture Using Sodium-Based Dry Sorbents
,”
Appl. Energy
,
252
, p.
113434
. 10.1016/j.apenergy.2019.113434
You do not currently have access to this content.