Abstract

The structural and architectural elements of building-integrated photovoltaic-thermal (BIPVT) systems are made up of photovoltaic (PV) modules and these are required to be fixed at an optimum inclination angle for generating maximum exergy. This work presents an attempt to determine the amount of exergy generated by an optimally inclined double-storied BIPV thermal system by considering the actual cyclic nature of insolation, surrounding air temperature, PV cell temperature, intermediate slab temperature, and the chamber temperature. The insolation value, which is computed by an anisotropic sky model along with these cyclic variables, is used for solving the set of governing differential equations for evaluating the exergy of the system. Other influencing parameters of the BIPV thermal systems such as air changes in both chambers, packing factor of PV module, the orientation of PV module, and thickness of the intermediate slab are considered for finding its effect on the total exergy of the system. Numerical results show that for packing factor more than 0.6, there is no significant change in total heat exergy with respect to the inclination angle. For packing factor more than 0.3, the generation of electrical exergy exceeds the heat exergy, and the overall exergy of BIPVT system decreases with rise in packing factor (βm) up to 0.3 and then rises nonlinearly.

References

1.
Tripathy
,
M.
,
Sadhu
,
P. K.
, and
Panda
,
S. K.
,
2016
, “
A Critical Review on Building Integrated Photovoltaic Products and Their Applications
,”
Renewable Sustainable Energy Rev.
,
61
(
9
), pp.
451
465
. 10.1016/j.rser.2016.04.008
2.
Mulcué-Nieto
,
L. F.
, and
Mora-López
,
L.
,
2017
, “
A Novel Methodology for the Pre-classification of Façades Usable for the Decision of Installation of Integrated PV in Buildings: The Case for Equatorial Countries
,”
Energy
,
141
, pp.
2264
2276
. 10.1016/j.energy.2017.11.150
3.
Pour
,
H. S. S.
,
Beheshti
,
H. K.
, and
Rahnama
,
M.
,
2011
, “
The Gain of the Energy Under the Optimum Angles of Solar Panels During a Year in Isfahan, Iran
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
33
(
13
), pp.
1281
1290
. 10.1080/15567036.2010.549923
4.
Liu
,
B. Y. H.
, and
Jordan
,
R. C.
,
1963
, “
The Long-Term Average Performance of Flat-Plate Solar-Energy Collectors
,”
Sol. Energy
,
7
(
2
), pp.
53
74
. 10.1016/0038-092X(63)90006-9
5.
Klein
,
S. A.
,
1976
, “
Calculation of Monthly Average Insolation on Tilted Surfaces
,”
Sol. Energy
,
19
(
4
), pp.
325
329
. 10.1016/0038-092x(77)90001-9
6.
Yang
,
H.
, and
Lu
,
L.
,
2007
, “
The Optimum Tilt Angles and Orientations of PV Claddings for Building-Integrated Photovoltaic (BIPV) Applications
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
253
255
. 10.1115/1.2212439
7.
Ayaz
,
R.
,
Durusu
,
A.
, and
Akca
,
H.
,
2017
, “
Determination of Optimum Tilt Angle for Different Photovoltaic Technologies Considering Ambient Conditions: A Case Study for Burdur, Turkey
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041001
. 10.1115/1.4036412
8.
Tripathy
,
M.
,
Yadav
,
S.
,
Sadhu
,
P. K.
, and
Panda
,
S. K.
,
2017
, “
Determination of Optimum Tilt Angle and Accurate Insolation of BIPV Panel Influenced by Adverse Effect of Shadow
,”
Renew. Energy
,
104
, pp.
211
223
. 10.1016/j.renene.2016.12.034
9.
Moghadam
,
H.
, and
Deymeh
,
S. M.
,
2015
, “
Determination of Optimum Location and Tilt Angle of Solar Collector on the Roof of Buildings With Regard to Shadow of Adjacent Neighbors
,”
Sustain. Cities Soc.
,
14
(
1
), pp.
215
222
. 10.1016/j.scs.2014.09.009
10.
Vats
,
K.
, and
Tiwari
,
G. N.
,
2012
, “
Performance Evaluation of a Building Integrated Semitransparent Photovoltaic Thermal System for Roof and Faade
,”
Energy Build.
,
45
, pp.
211
218
. 10.1016/j.enbuild.2011.11.008
11.
Tripathy
,
M.
,
Yadav
,
S.
,
Panda
,
S. K.
, and
Sadhu
,
P. K.
,
2017
, “
Performance of Building Integrated Photovoltaic Thermal Systems for the Panels Installed at Optimum Tilt Angle
,”
Renew. Energy
,
113
, pp.
1056
1069
. 10.1016/j.renene.2017.06.052
12.
Sainthiya
,
H.
,
Beniwal
,
N. S.
, and
Garg
,
N.
,
2018
, “
Efficiency Improvement of a Photovoltaic Module Using Front Surface Cooling Method in Summer and Winter Conditions
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061009
. 10.1115/1.4040238
13.
Salem Ahmed
,
M.
,
Mohamed
,
A. S. A.
, and
Maghrabie
,
H. M.
,
2019
, “
Performance Evaluation of Combined Photovoltaic Thermal Water Cooling System for Hot Climate Regions
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041010
. 10.1115/1.4042723
14.
Waqas
,
A.
, and
Jie
,
J.
,
2018
, “
Effectiveness of Phase Change Material for Cooling of Photovoltaic Panel for Hot Climate
,”
ASME J. Sol. Energy Eng.
,
140
(
4
), p.
041006
. 10.1115/1.4039550
15.
Yadav
,
S.
,
Panda
,
S. K.
, and
Tripathy
,
M.
,
2018
, “
Performance of Building Integrated Photovoltaic Thermal System With PV Module Installed at Optimum Tilt Angle and Influenced by Shadow
,”
Renewable Energy
,
127
, pp.
11
23
. 10.1016/j.renene.2018.04.030
16.
Deo
,
A.
,
Mishra
,
G. K.
, and
Tiwari
,
G. N.
,
2017
, “
A Thermal Periodic Theory and Experimental Validation of Building Integrated Semi-Transparent Photovoltaic Thermal (BiSPVT) System
,”
Sol. Energy
,
155
, pp.
1021
1032
. 10.1016/j.solener.2017.07.013
17.
Tiwari
,
G. N.
, and
Shyam
,
A. T.
,
2016
,
Energy Systems in Electrical Engineering Handbook of Solar Energy Theory
,
Analysis and Applications
,
Singapore
.
18.
Abid
,
M.
, and
Hepbasli
,
A.
,
2015
, “
Dynamic Exergetic Analysis and Evaluation of Photovoltaic Modules
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
37
(
21
), pp.
2271
2284
. 10.1080/15567036.2012.703287
19.
Saloux
,
E.
,
Teyssedou
,
A.
, and
Sorin
,
M.
,
2013
, “
Analysis of Photovoltaic (PV) and Photovoltaic/Thermal (PV/T) Systems Using the Exergy Method
,”
Energy Build.
,
67
, pp.
275
285
. 10.1016/j.enbuild.2013.08.012
20.
Kotas
,
T. J.
,
2013
,
The Exergy Method of Thermal Plant Analysis
,
Elsevier
.
21.
Daghigh
,
R.
, and
Khaledian
,
Y.
,
2017
, “
Design and Fabrication of a Bi-Fluid Type Photovoltaic-Thermal Collector
,”
Energy
,
135
, pp.
112
127
. 10.1016/j.energy.2017.06.108
22.
Khaki
,
M.
,
Shahsavar
,
A.
, and
Khanmohammadi
,
S.
,
2018
, “
Scenario-Based Multi-objective Optimization of an Air-Based Building-Integrated Photovoltaic/Thermal System
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011003
. 10.1115/1.4038050
23.
Sarhaddi
,
F.
,
Farahat
,
S.
,
Ajam
,
H.
, and
Behzadmehr
,
A.
,
2010
, “
Exergetic Performance Assessment of a Solar Photovoltaic Thermal (PV/T) Air Collector
,”
Energy Build.
,
42
(
11
), pp.
2184
2199
. 10.1016/j.enbuild.2010.07.011
24.
Badescu
,
V.
,
2018
, “
Upper Bounds for the Conversion Efficiency of Diluted Blackbody Radiation Energy Into Work
,”
J. Non-Equilibrium Thermodyn.
,
43
(
4
), pp.
273
287
. 10.1515/jnet-2018-0004
25.
Kashyap
,
Y.
,
Singh
,
A.
, and
Sekhar
,
Y. R.
,
2018
, “
Exergy Analysis of a Flat Plate Solar Collector With Grooved Absorber Tube Configuration Using Aqueous ZnO-Ethylene Glycol
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061011
. 10.1115/1.4040582
26.
Buonomano
,
A.
,
Calise
,
F.
,
Palombo
,
A.
, and
Vicidomini
,
M.
,
2019
, “
Transient Analysis, Exergy and Thermo-Economic Modelling of Façade Integrated Photovoltaic/Thermal Solar Collectors
,”
Renewable Energy
,
137
, pp.
109
126
. 10.1016/j.renene.2017.11.060
27.
Yadav
,
S.
,
Panda
,
S. K.
, and
Hachem-Vermette
,
C.
,
2020
, “
Method to Improve Performance of Building Integrated Photovoltaic Thermal System Having Optimum Tilt and Facing Directions
,”
Appl. Energy
,
266
, p.
114881
. 10.1016/j.apenergy.2020.114881
28.
Shukla
,
A. K.
,
Sudhakar
,
K.
, and
Baredar
,
P.
,
2016
, “
Exergetic Analysis of Building Integrated Semitransparent Photovoltaic Module in Clear Sky Condition at Bhopal India
,”
Case Stud. Therm. Eng.
,
8
, pp.
142
151
. 10.1016/j.csite.2016.06.009
29.
Yadav
,
S.
, and
Panda
,
S. K.
,
2020
, “
Thermal Performance of BIPV System by Considering Periodic Nature of Insolation and Optimum Tilt-Angle of PV Panel
,”
Renewable Energy
,
150
, pp.
136
146
. 10.1016/j.renene.2019.12.133
30.
Duffie
,
J. A.
,
Beckman
,
W. A.
, and
McGowan
,
J.
,
2020
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
Hoboken, NJ
.
31.
Erbs
,
D. G.
,
Klein
,
S. A.
, and
Duffie
,
J. A.
,
1982
, “
Estimation of the Diffuse Radiation Fraction for Hourly, Daily and Monthly-Average Global Radiation
,”
Sol. Energy
,
28
(
4
), pp.
293
302
. 10.1016/0038-092X(82)90302-4
32.
Kacira
,
M.
,
Simsek
,
M.
,
Babur
,
Y.
, and
Demirkol
,
S.
,
2004
, “
Determining Optimum Tilt Angles and Orientations of Photovoltaic Panels in Sanliurfa, Turkey
,”
Renewable Energy
,
29
(
8
), pp.
1265
1275
. 10.1016/j.renene.2003.12.014
33.
Badescu
,
V.
,
2018
, “
How Much Work Can Be Extracted From Diluted Solar Radiation?
,”
Sol. Energy
,
170
, pp.
1095
1100
. 10.1016/j.solener.2018.05.094
34.
Tyagi
,
A.P.
,
2009
,
Solar Radiant Energy Over India
,
India Meteorological Department, Ministry of Earth Science
.
35.
Gharakhani Siraki
,
A.
, and
Pillay
,
P.
,
2012
, “
Study of Optimum Tilt Angles for Solar Panels in Different Latitudes for Urban Applications
,”
Sol. Energy
,
86
(
6
), pp.
1920
1928
. 10.1016/j.solener.2012.02.030
You do not currently have access to this content.