Abstract

Temperature fields and their transient behaviors are essential subjects to be considered for modeling and design of absorber tubes in concentrated solar power plants. Both subjects have been addressed by various authors. However, the first subject has been primarily solved in the steady state. While the second has been solved by considering transient variations in the environmental or operating conditions, but with a heat conduction model in steady state. To the best of our knowledge, there are no analytical transient two-dimensional (2D) (r, φ) solutions involving nonuniform heat flux distribution (NUHFD) on the absorber tube of a parabolic trough solar collector (PTC). This study aims to obtain an analytical solution for the transient heat conduction in 2D of the absorber tube. The analytical solution was obtained using the method of separation of variables and the superposition principle. Two NUHFD functions were analyzed: a step function and a local concentration ratio (LCR) function. To the first function, the effect of the inlet fluid temperature and efficiency were also studied. The results agree with experimental and numerical results from the literature. The maximum average root-mean-square was near 6.4% for the step function, while the maximum average error was 1% for LCR function. The theoretical energy balances corroborate the validity of the analytical solution. The analytical solution could be useful to compare other theoretical studies (e.g., to prove new numerical schemes), to simulate other parameters of design, and to calibrate experimental tests. Even this work could be extended for nonlinear boundary conditions.

References

1.
Jiji
,
L. M.
,
2009
,
Heat Conduction
, 3rd ed.,
Springer
,
Berlin, Heidelberg
.
2.
Wang
,
Z.
,
Ni
,
J.
,
Zhao
,
L.
,
Deng
,
S.
, and
Zhao
,
D.
,
2017
, “
Simulation and Optimization of Parabolic Trough Receiver With Non-Uniform Heat Flux Distribution: A Review
,”
Energy Procedia.
,
142
, pp.
700
707
. 10.1016/j.egypro.2017.12.115
3.
He
,
Y. L.
,
Wang
,
K.
,
Qiu
,
Y.
,
Du
,
B. C.
,
Liang
,
Q.
, and
Du
,
S.
,
2019
, “
Review of the Solar Flux Distribution in Concentrated Solar Power: Non-Uniform Features, Challenges, and Solutions
,”
Appl. Therm. Eng.
,
149
, pp.
448
474
. 10.1016/j.applthermaleng.2018.12.006
4.
Abed
,
N.
, and
Afgan
,
I.
,
2020
, “
An Extensive Review of Various Technologies for Enhancing the Thermal and Optical Performances of Parabolic Trough Collectors
,”
Int. J. Energy Res.
,
44
(
7
), pp.
5117
5164
. 10.1002/er.5271
5.
Wang
,
K.
,
He
,
Y.
, and
Cheng
,
Z.
,
2014
, “
A Design Method and Numerical Study for a New Type Parabolic Trough Solar Collector With Uniform Solar Flux Distribution
,”
Sci. China Technol. Sci.
,
57
(
3
), pp.
531
540
. 10.1007/s11431-013-5452-6
6.
Wang
,
Y.
,
Liu
,
Q.
,
Lei
,
J.
, and
Jin
,
H.
,
2015
, “
Performance Analysis of a Parabolic Trough Solar Collector With Non-Uniform Solar Flux Conditions
,”
Int. J. Heat Mass Transf.
,
82
, pp.
236
249
. 10.1016/j.ijheatmasstransfer.2014.11.055
7.
Lu
,
J.
,
Ding
,
J.
,
Yang
,
J.
, and
Yang
,
X.
,
2013
, “
Nonuniform Heat Transfer Model and Performance of Parabolic Trough Solar Receiver
,”
Energy
,
59
, pp.
666
675
. 10.1016/j.energy.2013.07.052
8.
Lu
,
J.
,
Yuan
,
Q.
,
Ding
,
J.
,
Wang
,
W.
, and
Liang
,
J.
,
2016
, “
Experimental Studies on Nonuniform Heat Transfer and Deformation Performances for Trough Solar Receiver
,”
Appl. Therm. Eng.
(
Part A
),
109
, pp.
497
506
. 10.1016/j.applthermaleng.2016.08.096
9.
Moya
,
S. L.
,
Valenzuela
,
L.
, and
Zarza
,
E.
,
2011
, “
Numerical Study of the Thermal-Hydraulic Behavior of Water-Steam Flow in the Absorber Tube of the DISS System Using RELAP
,”
17th SolarPACES Conference
,
Gradana
, p.
8
.
10.
Valenzuela
,
L.
,
Saynes
,
J.
, and
Moya
,
S. L.
,
2016
, “
Análisis Termo-Hidráulico de Captadores Solares Cilindroparabólicos Para Generación Directa de Vapor con RELAP5
,”
Tecnol. y Ciencias Del Agua. VII
, pp.
75
91
. http://www.redalyc.org/articulo.oa?id=353546192005
11.
Abedini-Sanigy
,
M. H.
,
Ahmadi
,
F.
,
Goshtasbirad
,
E.
, and
Yaghoubi
,
M.
,
2015
, “
Thermal Stress Analysis of Absorber Tube for a Parabolic Collector Under Quasi-Steady State Condition
,”
Energy Procedia.
,
69
, pp.
3
13
. 10.1016/j.egypro.2015.03.002
12.
Lei
,
D.
,
Fu
,
X.
,
Ren
,
Y.
,
Yao
,
F.
, and
Wang
,
Z.
,
2019
, “
Temperature and Thermal Stress Analysis of Parabolic Trough Receivers
,”
Renewable Energy
,
136
, pp.
403
413
. 10.1016/j.renene.2019.01.021
13.
Khanna
,
S.
,
Kedare
,
S. B.
, and
Singh
,
S.
,
2014
, “
Deflection and Stresses in Absorber Tube of Solar Parabolic Trough Due to Circumferential and Axial Flux Variations on Absorber Tube Supported at Multiple Points
,”
Sol. Energy
,
99
, pp.
134
151
. 10.1016/j.solener.2013.11.005
14.
Flores
,
O.
,
Marugán-Cruz
,
C.
,
Santana
,
D.
, and
García-Villalba
,
M.
,
2014
, “
Thermal Stresses Analysis of a Circular Tube in a Central Receiver
,”
Energy Procedia.
,
49
, pp.
354
362
. 10.1016/j.egypro.2014.03.038
15.
Marugán-Cruz
,
C.
,
Flores
,
O.
,
Santana
,
D.
, and
García-Villalba
,
M.
,
2016
, “
Heat Transfer and Thermal Stresses in a Circular Tube With a Non-Uniform Heat Flux
,”
Int. J. Heat Mass Transf.
,
96
, pp.
256
266
. 10.1016/j.ijheatmasstransfer.2016.01.035
16.
Khanna
,
S.
,
Singh
,
S.
, and
Kedare
,
S. B.
,
2015
, “
Explicit Expressions for Temperature Distribution and Deflection in Absorber Tube of Solar Parabolic Trough Concentrator
,”
Sol. Energy
,
114
, pp.
289
302
. 10.1016/j.solener.2015.01.044
17.
Khanna
,
S.
,
Sharma
,
V.
,
Kedare
,
S. B.
, and
Singh
,
S.
,
2016
, “
Experimental Investigation of the Bending of Absorber Tube of Solar Parabolic Trough Concentrator and Comparison With Analytical Results
,”
Sol. Energy
,
125
, pp.
1
11
. 10.1016/j.solener.2015.11.046
18.
Khanna
,
S.
,
Newar
,
S.
,
Sharma
,
V.
,
Panigrahi
,
P. K.
, and
Mallick
,
T. K.
,
2018
, “
Deformation of Receiver in Solar Parabolic Trough Collector Due to Non Uniform Temperature and Solar Flux Distribution and Use of Bimetallic Absorber Tube With Multiple Supports
,”
Energy
,
165
(
Part A
), pp.
1078
1088
. 10.1016/j.energy.2018.09.145
19.
Flores
,
V.
, and
Almanza
,
R.
,
2004
, “
Behavior of the Compound Wall Copper-Steel Receiver With Stratified Two-Phase Flow Regimen in Transient States When Solar Irradiance is Arriving on One Side of Receiver
,”
Sol. Energy
,
76
(
1–3
), pp.
195
198
. 10.1016/j.solener.2003.08.015
20.
Reynolds
,
W. C.
,
1963
, “
Turbulent Heat Transfer in a Circular Tube With Variable Circumferential Heat Flux
,”
Int. J. Heat Mass Transf.
,
6
(
6
), pp.
445
454
. 10.1016/0017-9310(63)90119-4
21.
Okafor
,
I. F.
,
Dirker
,
J.
, and
Meyer
,
J. P.
,
2014
, “
Influence of Circumferential Solar Heat Flux Distribution on the Heat Transfer Coefficients of Linear Fresnel Collector Absorber Tubes
,”
Sol. Energy
,
107
, pp.
381
397
. 10.1016/j.solener.2014.05.011
22.
Okafor
,
I. F.
,
Dirker
,
J.
, and
Meyer
,
J. P.
,
2017
, “
Influence of Non-Uniform Heat Flux Distributions on the Secondary Flow, Convective Heat Transfer and Friction Factors for a Parabolic Trough Solar Collector Type Absorber Tube
,”
Renewable Energy
,
108
, pp.
287
302
. 10.1016/j.renene.2017.02.053
23.
Xu
,
L.
,
Stein
,
W.
,
Kim
,
J. S.
,
Too
,
Y. C. S.
,
Guo
,
M.
, and
Wang
,
Z.
,
2018
, “
Transient Numerical Model for the Thermal Performance of the Solar Receiver
,”
Appl. Therm. Eng.
,
141
, pp.
1035
1047
. 10.1016/j.applthermaleng.2018.05.112
24.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Xiao
,
J.
,
Tao
,
Y. B.
, and
Xu
,
R. J.
,
2010
, “
Three-Dimensional Numerical Study of Heat Transfer Characteristics in the Receiver Tube of Parabolic Trough Solar Collector
,”
Int. Commun. Heat Mass Transf.
,
37
(
7
), pp.
782
787
. 10.1016/j.icheatmasstransfer.2010.05.002
25.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Cui
,
F. Q.
,
Xu
,
R. J.
, and
Tao
,
Y. B.
,
2012
, “
Numerical Simulation of a Parabolic Trough Solar Collector With Nonuniform Solar Flux Conditions by Coupling FVM and MCRT Method
,”
Sol. Energy
,
86
(
6
), pp.
1770
1784
. 10.1016/j.solener.2012.02.039
26.
Martínez
,
I.
, and
Almanza
,
R.
,
2007
, “
Experimental and Theoretical Analysis of Annular Two-Phase Flow Regimen in Direct Steam Generation for a Low-Power System
,”
Sol. Energy
,
81
(
2
), pp.
216
226
. 10.1016/j.solener.2006.03.014
27.
Serrano-Aguilera
,
J. J.
,
Valenzuela
,
L.
, and
Parras
,
L.
,
2014
, “
Thermal 3D Model for Direct Solar Steam Generation Under Superheated Conditions
,”
Appl. Energy
,
132
, pp.
370
382
. 10.1016/j.apenergy.2014.07.035
28.
Wang
,
Y.
,
Xu
,
J.
,
Liu
,
Q.
,
Chen
,
Y.
, and
Liu
,
H.
,
2016
, “
Performance Analysis of a Parabolic Trough Solar Collector Using Al2O3/Synthetic Oil Nanofluid
,”
Appl. Therm. Eng.
,
107
, pp.
469
478
. 10.1016/j.applthermaleng.2016.06.170
29.
Heidemann
,
W.
,
Spindler
,
K.
, and
Hahne
,
E.
,
1992
, “
Steady-State and Transient Temperature Field in the Absorber Tube of a Direct Steam Generating Solar Collector
,”
Int. J. Heat Mass Transf.
,
35
(
3
), pp.
649
657
. 10.1016/0017-9310(92)90124-B
30.
Wirz
,
M.
,
Roesle
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Three-Dimensional Optical and Thermal Numerical Model of Solar Tubular Receivers in Parabolic Trough Concentrators
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041012
. 10.1115/1.4007494
31.
Xu
,
L.
,
Stein
,
W.
,
Kim
,
J. S.
, and
Wang
,
Z.
,
2018
, “
Three-Dimensional Transient Numerical Model for the Thermal Performance of the Solar Receiver
,”
Renewable Energy
,
120
, pp.
550
566
. 10.1016/j.renene.2017.12.055
32.
Özişik
,
N.
,
1993
,
Heat Conduction
, Second,
John Wiley & Sons, Inc.
,
New York
.
33.
Hahn
,
D. W.
, and
Özişik
,
M. N.
,
2012
,
Heat Conduction
, Third Edition,
John Wiley & Sons, Inc.
,
New York
.
34.
Rapier
,
A. C.
,
1972
, “
Forced Convection Heat Transfer in a Circular Tube With Non-Uniform Heat Flux Around the Circumference
,”
Int. J. Heat Mass Transf.
,
15
(
3
), pp.
527
537
. 10.1016/0017-9310(72)90215-3
35.
Faghri
,
M.
,
1973
,
Analysis of Heat Transfer, Including Axial Conduction, for Laminar Tube Flow With Arbitrary Circumferential Wall Heat Flux
,
Oregon State University
,
Corvallis, OR
.
36.
Forristall
,
R.
,
2003
,
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
, http://fac.ksu.edu.sa/sites/default/files/34169.pdf, Accessed October 10, 2020.
37.
Liang
,
H.
,
You
,
S.
, and
Zhang
,
H.
,
2015
, “
Comparison of Different Heat Transfer Models for Parabolic Trough Solar Collectors
,”
Appl. Energy
,
148
, pp.
105
114
. 10.1016/j.apenergy.2015.03.059
38.
Elsafi
,
A. M.
,
2015
, “
On Thermo-Hydraulic Modeling of Direct Steam Generation
,”
Sol. Energy
,
120
, pp.
636
650
. 10.1016/j.solener.2015.08.008
39.
Arfken
,
G. B.
, and
Weber
,
H. J.
,
2005
,
Mathematical Methods for Physicists
, 6th ed.,
Elsevier Academic Press
,
San Diego, CA.
40.
Abramowitz
,
M.
,
Stegun
,
I. A.
, and
Miller
,
D.
,
1965
, “
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55)
,”
ASME J. Appl. Mech.
,
32
(
1
), pp.
239
239
. 10.1115/1.3625776
41.
Maytorena
,
V. M.
, and
Hinojosa
,
J. F.
,
2019
, “
Effect of non-Uniform Concentrated Solar Flux on Direct Steam Generation in Vertical Pipes of Solar Tower Receivers
,”
Sol. Energy
,
183
, pp.
665
676
. 10.1016/j.solener.2019.03.047
42.
Maytorena
,
V. M.
, and
Hinojosa
,
J. F.
,
2019
, “
Three-dimensional Numerical Study of Direct Steam Generation in Vertical Tubes Receiving Concentrated Solar Radiation
,”
Int. J. Heat Mass Transf.
,
137
, pp.
413
433
. 10.1016/j.ijheatmasstransfer.2019.03.101
43.
Roldán
,
M. I.
,
Valenzuela
,
L.
, and
Zarza
,
E.
,
2013
, “
Thermal Analysis of Solar Receiver Pipes With Superheated Steam
,”
Appl. Energy
,
103
, pp.
73
84
. 10.1016/j.apenergy.2012.10.021
44.
Sandá
,
A.
,
Moya
,
S. L.
, and
Valenzuela
,
L.
,
2019
, “
Modelling and Simulation Tools for Direct Steam Generation in Parabolic-Trough Solar Collectors: A Review
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109226
. 10.1016/j.rser.2019.06.033
45.
Serrano-Aguilera
,
J. J.
,
Valenzuela
,
L.
, and
Parras
,
L.
,
2017
, “
Thermal Hydraulic RELAP5 Model for a Solar Direct Steam Generation System Based on Parabolic Troughs Collectors Operating in Once-Through Mode
,”
Energy
,
133
, pp.
796
807
. 10.1016/j.energy.2017.05.156
46.
He
,
Y.-L.
,
Xiao
,
J.
,
Cheng
,
Z.-D.
, and
Tao
,
Y.-B.
,
2011
, “
A MCRT and FVM Coupled Simulation Method for Energy Conversion Process in Parabolic Trough Solar Collector
,”
Renewable Energy
,
36
(
3
), pp.
976
985
. 10.1016/j.renene.2010.07.017
47.
Idaho National Engineering and Environmental Laboratory
,
2002
,
RELAP5-3D© Code Manual Volume I: Code Structure, System Models, and Solution Methods
,
Idaho Falls, ID
.
48.
Mohamad
,
A.
,
Orfi
,
J.
, and
Alansary
,
H.
,
2014
, “
Heat Losses From Parabolic Trough Solar Collectors
,”
Int. J. Energy Res.
,
38
(
1
), pp.
20
28
. 10.1002/er.3010
49.
Chang
,
C.
,
Li
,
X.
, and
Zhang
,
Q. Q.
,
2014
, “
Experimental and Numerical Study of the Heat Transfer Characteristics in Solar Thermal Absorber Tubes With Circumferentially Non-Uniform Heat Flux
,”
Energy Procedia.
,
49
, pp.
305
313
. 10.1016/j.egypro.2014.03.033
You do not currently have access to this content.