Abstract

Energy storage will become indispensable to complement the uncertainty of intermittent renewable resources and to firm the electricity supply as renewable power generation becomes the mainstream new-built energy source and fossil fuel power plants are phased out to meet carbon-neutral utility targets. Current energy storage methods based on pumped storage hydropower or batteries have many limitations. Thermal energy storage (TES) has unique advantages in scale and siting flexibility to provide grid-scale storage capacity. A particle-based TES system is projected to have promising cost and performance characteristics to meet the future growing energy storage needs. This paper introduces the system and components required for particle TES to become technically and economically competitive. The system integrates electric particle heaters, particle TES within insulated concrete silos, and an efficient air-Brayton combined-cycle power system to provide power for storage durations up to several days via low-cost, high-performance storage cycles. Design specifications and cost estimation of major components in a commercial-scale system are presented in this paper. A techno-economic analysis based on preliminary component designs and performance indicates that particle TES integrated with an air-Brayton combined-cycle power system has a path to achieve the targeted levelized cost of storage of 5 ¢/kWh-cycle at a round-trip efficiency of 50% when taking low-cost energy-specific components and leveraging basic assets from existing thermal power plants. The cost model provides insights for further development and economic potentials for long-duration energy storage.

References

1.
Frew
,
B.
,
Sergi
,
B.
,
Denholm
,
P.
,
Cole
,
W.
,
Gates
,
N.
,
Levie
,
D.
, and
Margolis
,
R.
,
2021
, “
The Curtailment Paradox in the Transition to High Solar Power Systems
,”
Joule
,
5
(
5
), pp.
1143
1167
.
2.
Albertus
,
P.
,
Manser
,
J. S.
, and
Litzelman
,
S.
,
2020
, “
Long-Duration Electricity Storage Applications, Economics, and Technologies
,”
Joule
,
4
(
1
), pp.
21
32
.
3.
Denholm
,
P.
,
Arent
,
D. J.
,
Baldwin
,
S. F.
,
Bilello
,
D. E.
,
Brinkman
,
G. L.
,
Cochran
,
J. M.
,
Cole
,
W. J.
, et al
,
2021
, “
The Challenges of Achieving a 100% Renewable Electricity System in the United States
,”
Joule
,
5
(
6
), pp.
1331
1352
.
4.
Schmidt
,
O.
,
Melchior
,
S.
,
Hawkes
,
A.
, and
Staffell
,
I.
,
2019
, “
Projecting the Future Levelized Cost of Electricity Storage Technologies
,”
Joule
,
3
(
1
), pp.
81
100
.
5.
Mehos
,
M.
,
Price
,
H.
,
Cable
,
R.
,
Kearney
,
D.
,
Kelly
,
B.
,
Kolb
,
G.
, and
Morse
,
F.
,
2020
,
Concentrating Solar Power Best Practices
,
National Renewable Energy Laboratory
,
Golden, CO
, NREL/TP-5500-75763, June.
6.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
,
Ma
,
Z.
,
Kruizenga
,
A.
, and
NREL
,
2017
,
Concentrating Solar Power Gen3 Demonstration Roadmap
,
National Renewable Energy Laboratory
,
Golden, CO
, NREL/TP-5500-67464
7.
Turchi
,
C. S.
,
Vidal
,
J.
, and
Bauer
,
M.
,
2018
, “
Molten Salt Power Towers Operating at 600 °C to 650 °C : Salt Selection and Cost Benefits Keywords
,”
Sol. Energy
,
164
, pp.
38
46
.
8.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031014
.
9.
Ma
,
Z.
, and
Martinek
,
J.
,
2018
, “
Analysis of Solar Receiver Performance for Chemical-Looping Integration With a Concentrating Solar Thermal System
,”
Proceedings of the ASME 2018 Power and Energy Conference Power Energy
,
Lake Buena Vista, FL
, ES2018-7185, p.
V001T10A001
.
10.
Augustine
,
C.
, and
Blair
,
N.
,
2021
,
Storage Futures Study Storage Technology Modeling Input Data Report Storage Technology Modeling Input Data Report
,
National Renewable Energy Laboratory
,
Golden, CO
, pp.
1
84
. NREL/TP-5700-78694
11.
Farres-Antunez
,
P.
,
McTigue
,
J. D.
, and
White
,
A. J.
,
2019
, “
A Pumped Thermal Energy Storage Cycle With Capacity for Concentrated Solar Power Integration
,”
2019 Offshore Energy and Storage Summit
,
Brest, France
,
July 10–12
,
Proceeding published by Institute of Electrical and Electronics Engineers (IEEE)
, pp.
1
84
.
12.
Laughlin
,
R. B.
,
2017
, “
Pumped Thermal Grid Storage With Heat Exchange
,”
J. Renew. Sustain. Energy
,
9
(
4
), p.
044103
.
13.
Benato
,
A.
,
2017
, “
Performance and Cost Evaluation of an Innovative Pumped Thermal Electricity Storage Power System
,”
Energy
,
138
(
4
), pp.
419
436
.
14.
Benato
,
A.
, and
Stoppato
,
A.
,
2018
, “
Pumped Thermal Electricity Storage: A Technology Overview
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
301
315
.
15.
Chen
,
L. X.
,
Hu
,
P.
,
Zhao
,
P. P.
,
Xie
,
M. N.
, and
Wang
,
F. X.
,
2018
, “
Thermodynamic Analysis of a High Temperature Pumped Thermal Electricity Storage (HT-PTES) Integrated with a Parallel Organic Rankine Cycle (ORC)
,”
Energy Convers. Manag.
,
177
(
July
), pp.
150
160
.
16.
McTigue
,
J. D.
,
Farres-Antunez
,
P.
,
Markides
,
C. N.
, and
White
,
A. J.
,
2021
, “Pumped Thermal Energy Storage With Liquid Storage,”
Encyclopedia of Energy Storage
,
Elsevier
,
New York
, pp.
1
10
.
17.
McTigue
,
J. D.
,
Farres-Antunez
,
P.
,
Markides
,
C. N.
, and
White
,
A. J.
,
2021
, “Integration of Heat Pumps With Solar Thermal Systems for Energy Storage,”
Encyclopedia of Energy Storage
,
Elsevier
,
New York
, pp.
1
11
.
18.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
19.
Ma
,
Z.
,
Davenport
,
P.
, and
Martinek
,
J.
,
2020
, “
Particle-Based Thermal Energy Storage Systems
,” U.S. Patent Application Publication No. US2020/0124356 A1.
20.
Ma
,
Z.
,
Davenport
,
P.
, and
Martinek
,
J.
,
2020
, “
Thermal Energy Storage Using Solid Particles for Long-Duration Energy Storage
,”
ASME 2020 14th International Conference on Energy Sustainability, Virtual Conference
, ES2020-1693, p.
V001T08A003
.
21.
Gifford
,
J.
,
Ma
,
Z.
, and
Davenport
,
P.
,
2020
, “
Thermal Analysis of Insulation Design for a Thermal Energy Storage Silo Containment for Long-Duration Electricity Storage
,”
Front. Energy Res.
,
8
(
June
), pp.
1
12
.
22.
Ma
,
Z.
,
Gifford
,
J.
,
Davenport
,
P.
, and
Wang
,
X.
,
2021
, “
Fluidized Bed Heat Exchanger for Conversion of Thermal Energy to Electricity
,” U.S. Provisional Patent Application No. 17/376,367, July 15, 2021.
23.
Ma
,
Z.
,
Gifford
,
J.
,
Davenport
,
P.
, and
Jia
,
E.
,
2021
, “
Electric Charging Particle Heater for Electric Energy Storage
,” U.S. Patent Application No. 17/375,105, July 14, 2021.
24.
Ma
,
Z.
,
2016
, “
Methods and Systems for Concentrated Solar Power
,” Patent No. US 9,347,690 B2, Date of Patent: May 24, 2016.
25.
Ma
,
Z.
,
Glatzmaier
,
G. C.
, and
Kutscher
,
C. F.
,
2012
, “
The Thermal Energy Storage Solution
,”
Sol. Today
,
26
(
3
), pp.
22
26
.
26.
Ma
,
Z.
,
Mehos
,
M.
,
Glatzmaier
,
G.
, and
Sakadjian
,
B. B.
,
2015
, “
Development of a Concentrating Solar Power System Using Fluidized-Bed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage
,”
Energy Procedia
,
69
(
3
), pp.
1349
1359
.
27.
Gerdes
,
K.
,
Summers
,
W. M.
, and
Wimer
,
J.
,
2011
,
Quality Guidelines for Energy System Studies—Cost Estimation Methodology for NETL Assessments of Power Plant Performance
, National Energy Technology Laboratory (NETL), DOE/NETL-2011/1455, p.
26
.
28.
Roberts
,
A. G.
,
Raven
,
P.
, and
Pillai
,
K.
,
1977
,
Engineer, Design, Construct, Test and Evaluate a Pressurized Fluidized Bed Pilot Plant Using High Sulfur Coal for Production of Electric Power
.
Phase I. Preliminary Engineering. Curtiss-Wright Corp., Wood-Ridge, NJ (USA). Power Systems Div.Topical Report NO. FE-1726-30A
.
29.
James
,
R.
,
Zoelle
,
A.
,
Keairns
,
D.
,
Turner
,
M.
,
Woods
,
M.
, and
Kuehn
,
N.
,
2019
,
Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, National Energy Technology Laboratory (NETL), NETL-PUB-22638, DOE
.
30.
Afrin
,
S.
,
Hossain
,
N.
,
Ma
,
Z.
,
Krushnarao Kotteda
,
V. M.
,
Badhan
,
A.
, and
Kumar
,
V.
,
2022
, “
On-Sun Testing of a High-Temperature Solar Receiver’s Flux Distribution
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021001
.
31.
Ma
,
Z.
,
Davenport
,
P.
, and
Zhang
,
R.
,
2020
, “
Design Analysis of a Particle-Based Thermal Energy Storage System for Concentrating Solar Power or Grid Energy Storage
,”
J. Energy Storage
,
29
, p.
101382
.
32.
Davenport
,
P.
,
Ma
,
Z.
,
Nation
,
W.
,
Schirck
,
J.
,
Morris
,
A.
, and
Lambert
,
M.
,
2020
,
Thermal Stability of Silica for Application in Thermal Energy Storage: Preprint
,
National Renewable Energy Laboratory
,
Golden, CO
, NREL/CP-5700-77426, pp.
1
12
. https://www.nrel.gov/docs/fy21osti/77426.pdf
33.
Repole
,
K. K. D.
, and
Jeter
,
S. M.
,
2016
, “
Design and Analysis of a High Temperature Particulate Hoist for Proposed Particle Heating Concentrator Solar Power Systems
,”
Proceedings of the ASME 2016 10th International Conference on Energy Sustainability
, ES2016-59619, p.
V001T04A020
.
34.
Repole
,
K. K.
,
2019
, “
The Development and Application of Design and Optimization Methods for Energy Intensive Mechanical Systems for Challenging Environments as Applied to a Concentrated Solar Power Particle Lift System
,”
Ph.D. dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.
35.
Ho
,
C.
,
Carlson
,
M.
,
Albrecht
,
K.
,
Ma
,
Z.
,
Jeter
,
S.
, and
Nguyen
,
C.
,
2019
, “
Evaluation of Alternative Designs for a High Temperature Particle-to-SCO2 Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021001
.
36.
Ma
,
Z.
, and
Martinek
,
J.
,
2021
, “
Analysis of a Fluidized-Bed Particle/Supercritical-CO2 Heat Exchanger in a Concentrating Solar Power System
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031010
.
37.
The American Society of Mechanical Engineers (ASME)
,
2017
,
Section VIII: Division 2—Alternative Rules
,
ASME Boiler and Pressure Vessel Committee, ASME
,
Two Park Avenue, New York, NY
.
38.
Schaefer
,
R.
,
1979
,
Cost Estimate of Fluidized Bed Combustor Air Heater for Gas Turbines. FP-995
,
Technical Planning Study TPS 76-664, Curtiss-Wright Corp., Wood-Ridge, NJ
.
39.
Tribe
,
M. A.
, and
Alpine
,
R. L. W.
,
1986
, “
Scale Economies and the ‘0.6 Rule’
,”
Eng. Costs Prod. Econ.
,
10
(
4
), pp.
271
278
.
40.
Gas Turbine World
,
2019
,
Gas Turbine World, 2019 GTW Handbook
, Vol.
34
,
Pequot Publishing, Inc.
,
Fairfield, CT
.
41.
Silla
,
H.
,
2003
,
Chemical Process Engineering
,
CRC Press
,
New York
.
42.
Neff
,
B.
,
2019
, “
Estimated Cost of New Utility-Scale Generation in California: 2018 Update
”.
California Energy Commission
.
43.
Newell
,
S. A.
,
Hagerty
,
J. M.
,
Pfeifenberger
,
J. P.
,
Spees
,
K.
,
Liao
,
Q.
,
Ungate
,
C. D.
, and
Wroble
,
J.
,
2014
,
Cost of New Entry Estimates for Combustion Turbine and Combined Cycle Plants in PJM
,
The Brattle Group, Inc. prepared for PJM Interconnection, L.L.C.
44.
Pauschert
,
D.
,
2009
,
Study of Equipment Prices in the Power Sector, ESMAP Technical Paper 122/09
,
Energy Sector Management Assistance Program
,
Washington, DC
.
You do not currently have access to this content.