Abstract

The objective of the present work is to research the dynamic thermal performance of the solar power plant during the phase change material (PCM) capsule heat storage tank discharging process. Therefore, a transient, one-dimensional two-phase model for a packed bed latent heat storage unit and a comprehensive concentrating solar power generation system that combines a CO2 Brayton cycle and organic Rankine cycle were integrated. The influences of the key parameters of the packed bed PCM capsule heat storage tank on the overall power output and thermal efficiency of the system during discharge have been investigated, including the heat transfer fluid (HTF) velocity, the diameter of the PCM capsule, and the height of heat storage tank. The orthogonal analysis method is selected in this article, and the results showed that the maximal transient power output and overall power output of the actual combined cycle mode are decreased about 22% and 25%, respectively, in this research, compared with the idea Carnot cycle mode. That the HTF velocity in the thermal energy storage tank can be used to control the transient power output of the solar thermal power system. Using the small-sized filler capsule is an effective method to increase the thermal performance of the concentrated solar power (CSP) combined cycle system. Moreover, the corresponding discharging time is increased obviously, and the CSP with a high packed bed height can generate a more stable power output value during thermal energy discharging.

References

1.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Energy Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
153
159
.
2.
Carneiro
,
T.
,
Carvalho
,
P. C. M.
,
Alves
,
D. S. H.
,
Lima
,
M. A. F. B.
, and
Braga
,
A. P.
,
2022
, “
Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010801
.
3.
Cocco
,
D.
, and
Serra
,
F.
,
2015
, “
Performance Comparison of Two-Tank Direct and Thermocline Thermal Energy Storage Systems for 1mwe Class Concentrating Solar Power Plants
,”
Energy.
,
81
, pp.
526
536
.
4.
Hoffmann
,
J. F.
,
Fasquelle
,
T.
,
Goetz
,
V.
, and
Py
,
X.
,
2017
, “
Experimental and Numerical Investigation of a Thermocline Thermal Energy Storage Tank
,”
Appl. Therm. Eng.
,
114
, pp.
896
904
.
5.
Singh
,
H.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2010
, “
A Review on Packed Bed Solar Energy Storage Systems
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
1059
1069
.
6.
Bruch
,
A.
,
Molina
,
S.
,
Esence
,
T.
,
Fourmigué
,
J. F.
, and
Couturier
,
R.
,
2017
, “
Experimental Investigation of Cycling Behavior of Pilot-Scale Thermal Oil Packed-Bed Thermal Storage System
,”
Renewable Energy
,
103
, pp.
277
285
.
7.
Hao
,
P.
,
Huihua
,
D.
, and
Ling
,
X.
,
2014
, “
Thermal Investigation of PCM-Based High Temperature Thermal Energy Storage in Packed Bed
,”
Energy Convers. Manage.
,
81
, pp.
420
427
.
8.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
, “
Fundamentals of Heat and Mass Transfer, 6th Edition Code Access Code
,”
Staff Gen. Res. Papers
,
27
(
1–2
), pp.
139
162
.
9.
Zhao
,
B. C.
,
Chen
,
M. S.
,
Liu
,
C.
, and
Dai
,
Z. M.
,
2016
, “
Thermal Performance and Cost Analysis of a Multi-Layered Solid-PCM Thermocline Thermal Energy Storage for CSP Tower Plant
,”
Appl. Energy
,
178
, pp.
784
799
.
10.
Abu
,
H. H.
, and
Alnefaie
,
K. A.
,
2019
, “
Assessment of Thermal Performance of PCM in Latent Heat Storage System for Different Applications
,”
Sol. Energy
,
177
, pp.
317
323
.
11.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline
,”
Sol. Energy
,
84
(
6
), pp.
974
985
.
12.
Bonilla
,
J.
,
Yebra
,
L. J.
,
Dormido
,
S.
, and
Zarza
,
E.
,
2012
, “
Parabolic–Trough Solar Thermal Power Plant Simulation Scheme, Multi-Objective Genetic Algorithm Calibration and Validation
,”
Sol. Energy
,
86
(
1
), pp.
531
540
.
13.
Manenti
,
F.
, and
Ravaghi
,
A. Z.
,
2013
, “
Dynamic Simulation of Concentrating Solar Power Plant and Two-Tanks Direct Thermal Energy Storage
,”
Energy
,
55
, pp.
89
97
.
14.
Wagner
,
P. H.
, and
Wittmann
,
M.
,
2014
, “
Influence of Different Operation Strategies on Transient Solar Thermal Power Plant Simulation Models With Molten Salts as Heat Transfer fluid
,”
Energy Procedia.
,
49
, pp.
1652
1663
.
15.
Grange
,
B.
,
Dalet
,
C.
,
Falcoz
,
Q.
,
Ferrière
,
A.
, and
Flamant
,
G.
,
2016
, “
Impact of Thermal Energy Storage Integration on the Performance of a Hybrid Solar Gas-Turbine Power Plant
,”
Appl. Therm. Eng.
,
105
, pp.
266
275
.
16.
Llorente
,
G. I.
,
Álvarez
,
J. L.
, and
Blanco
,
D.
,
2011
, “
Performance Model for Parabolic Trough Solar Thermal Power Plants With Thermal Storage: Comparison to Operating Plant Data
,”
Solar Energy
,
85
(
10
), pp.
2443
2460
.
17.
Kolb
,
G. J.
,
2011
, “
Evaluation of Annual Performance of 2-Tank and Thermocline Thermal Storage Systems for Trough Plants
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031023
.
18.
Angelini
,
G.
,
Lucchini
,
A.
, and
Manzolini
,
G.
,
2014
, “
Comparison of Thermocline Molten Salt Storage Performances to Commercial Two-Tank Configuration
,”
Energy Procedia.
,
49
, pp.
694
704
.
19.
Fasquelle
,
T.
,
Falcoz
,
Q.
,
Neveu
,
P.
, and
Hoffmann
,
J. F.
,
2018
, “
Numerical Simulation of a 50 MWe Parabolic Trough Power Plant Integrating a Thermocline Storage Tank
,”
Energy Convers. Manage.
,
172
, pp.
9
20
.
20.
Wang
,
Z.
,
Zhang
,
H.
,
Dou
,
B.
,
Zhang
,
G.
, and
Huang
,
H.
,
2020
, “
The Thermal Stratification Evaluation of Phase-Change Materials in a Heat Storage Tank: Computational Fluid Dynamics and Experimental Study
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021012
.
21.
Karthikeyan
,
S.
,
Solomon
,
G. R.
,
Kumaresan
,
V.
, and
Velraj
,
R.
,
2014
, “
Parametric Studies on Packed Bed Storage Unit Filled With PCM Encapsulated Spherical Containers for Low Temperature Solar Air Heating Applications
,”
Energy Convers. Manage.
,
78
, pp.
74
80
.
22.
Wu
,
S.
,
Fang
,
G.
, and
Liu
,
X.
,
2011
, “
Dynamic Discharging Characteristics Simulation on Solar Heat Storage System With Spherical Capsules Using Paraffin as Heat Storage Material
,”
Renewable Energy
,
36
(
4
), pp.
1190
1195
.
23.
Dami
,
K. E.
,
Beltran
,
C. R.
,
Islas
,
S.
, and
Leal
,
C. D.
,
2021
, “
Numerical Simulation of Direct Solar Vapor Generation of Acetone for an Organic Rankine Cycle Using an Evacuated Tube Collector
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021010
.
24.
Yamaguchi
,
H.
,
Zhang
,
X. R.
, and
Fujima
,
K.
,
2006
, “
Solar Energy Powered Rankine Cycle Using Supercritical CO2
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2345
2354
.
25.
Ma
,
Z.
, and
Martinek
,
J.
,
2021
, “
Analysis of a Fluidized-Bed Particle/Supercritical-CO2 Heat Exchanger in a Concentrating Solar Power System
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031010
.
26.
Galione
,
P. A.
,
Perez
,
S. C. D.
,
Rodriguez
,
I.
,
Torras
,
S.
, and
Rigola
,
J.
,
2015
, “
Multi-Layered Solid-PCM Thermocline Thermal Storage for CSP. Numerical Evaporation of Its Application in a 50 MWe Plant
,”
Solar Energy
,
119
, pp.
134
150
.
27.
Mohammad
,
A. E.
,
Nazanin
,
C. O.
, and
Christos
,
N. M.
,
2020
, “
Working-Fluid Selection and Thermoeconomic Optimization of a Combined Cycle Cogeneration Dual-Loop Organic Rankine Cycle (ORC) System for Solid Oxide Fuel Cell (SOFC) Waste-Heat Recovery
,”
Appl. Energy
,
261
, p.
114384
.
28.
Marcio
,
S.
,
Jorge
,
A.
,
Eduardo
,
C.
,
Ricardo
,
M.
, and
Jose
,
R.
,
2020
, “
Design Strategy for Component and Working Fluid Selection in a Domestic Micro-CHP ORC Boiler
,”
Appl. Therm. Eng.
,
169
, p.
114945
.
29.
Izquierdo
,
B. M. A.
,
Sobrinon
,
C.
, and
Almendros
,
I. J. A.
,
2013
, “
Thermal Energy Storage in a Fluidized Bed of PCM
,”
Chem. Eng. J.
,
230
, pp.
573
583
.
30.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-Fluid Heat Transfer in Packed Beds: Correlation of Nusselt Numbers
,”
Chem. Eng. Sci.
,
34
(
3
), pp.
325
336
.
31.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2007
,
Introduction to Heat Transfer
, 5th ed.,
John Wiley and Sons Inc
.,
New York, Chichester, Brisbane, Toronto, Singapore, Weinheim
, pp.
602
603
.
You do not currently have access to this content.