Abstract

Building a highly accurate model for solar cells and photovoltaic (PV) modules based on experimental data is becoming increasingly important for the simulation, evaluation, control, and optimization of PV systems. Powerful, accurate, and more robust optimization algorithms are needed to solve this problem. In this study, a new optimization approach based on the Levenberg–Marquardt algorithm (ImLM) is proposed to estimate the parameters of PV cells and modules and simulate their electrical behavior under all environmental conditions efficiently and accurately. To avoid the premature convergence of the Levenberg–Marquardt algorithm and the long computation time caused by a bad choice of initial values, we propose a new approach. This is a new reduced form leading to a nonlinear relationship of the series resistance and thus allowing to calculate the optimal initial values of the model parameters. Comparisons with other published methods show that the proposed approach gives not only a more accurate final solution but also a fast convergence speed and a better stability. Furthermore, tests on three PV modules of different technologies (multi-crystalline, thin film, and monocrystalline) reveal that the proposed algorithm performs well at different irradiations and temperatures. These results confirm that the ImLM approach is a valuable tool and can be an effective and efficient alternative for extracting PV model parameters and simulating PV module behavior under different conditions.

References

1.
Horoufiany
,
M.
, and
Ghandhari
,
R.
,
2019
, “
A New Photovoltaic Arrays Fixed Reconfiguration Method for Reducing Effects of One- and Two-Sided Mutual Shading
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031013
.
2.
Khaki
,
M.
,
Shahsavar
,
A.
, and
Khanmohammadi
,
S.
,
2018
, “
Scenario-Based Multi-objective Optimization of an Air-Based Building-Integrated Photovoltaic/Thermal System
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011003
.
3.
Sarper
,
H.
,
Melnykov
,
I.
, and
Martínez
,
L. A.
,
2021
, “
Prediction of Daily Photovoltaic Energy Production Using Weather Data and Regression
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
064502
.
4.
Abbassi
,
R.
,
Abbassi
,
A.
,
Heidari
,
A. A.
, and
Mirjalili
,
S.
,
2019
, “
An Efficient Salp Swarm-Inspired Algorithm for Parameters Identification of Photovoltaic Cell Models
,”
Energy Convers. Manage.
,
179
, pp.
362
372
.
5.
Jakhar
,
S.
,
Soni
,
M. S.
, and
Boehm
,
R. F.
,
2018
, “
Thermal Modeling of a Rooftop Photovoltaic/Thermal System With Earth Air Heat Exchanger for Combined Power and Space Heating
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031011
.
6.
Baharoon
,
D. A.
,
Rahman
,
H. A.
,
Omar
,
W. Z. W.
, and
Fadhl
,
S. O.
,
2015
, “
Historical Development of Concentrating Solar Power Technologies to Generate Clean Electricity Efficiently—A Review
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
996
1027
.
7.
Dougherty
,
B. P.
,
Fanney
,
A. H.
, and
Davis
,
M. W.
,
2005
, “
Measured Performance of Building Integrated Photovoltaic Panels—Round 2
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
314
323
.
8.
Gwesha
,
A. O.
,
Li
,
P.
, and
Alfulayyih
,
Y. M.
,
2021
, “
Optimization of Fixed Photovoltaic Panel ‘Tilt’ Angles for Maximal Energy Harvest Considering Year-Around Sky Coverage Conditions
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021002
.
9.
Fen
,
L.
,
Quanquan
,
Y.
,
Shanxu
,
D.
,
Jinbin
,
Z.
,
Nianjun
,
M.
, and
Zhenghong
,
C.
,
2015
, “
A Novel Model for Daily Energy Production Estimation of Grid-Connected Photovoltaic System
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031013
.
10.
Cornaro
,
C.
, and
Musella
,
D.
,
2013
, “
Comparative Analysis of Crystalline and Double-Junction Amorphous Silicon Modules Performance in Outdoor Conditions
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031022
.
11.
Averbukh
,
M.
,
Ben-Galim
,
Y.
, and
Uhananov
,
A.
,
2013
, “
Development of a Quick Dynamic Response Maximum Power Point Tracking Algorithm for off-Grid System With Adaptive Switching (On-Off) Control of DC/DC Converter
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
031022
.
12.
Chiteka
,
K.
,
Arora
,
R.
,
Sridhara
,
S. N.
, and
Enweremadu
,
C. C.
,
2021
, “
Influence of Irradiance Incidence Angle and Installation Configuration on the Deposition of Dust and Dust-Shading of a Photovoltaic Array
,”
Energy
,
216
, p.
119289
.
13.
Rezaee Jordehi
,
A.
,
2018
, “
Enhanced Leader Particle Swarm Optimisation (ELPSO): An Efficient Algorithm for Parameter Estimation of Photovoltaic (PV) Cells and Modules
,”
Sol. Energy
,
159
, pp.
78
87
.
14.
Nacar
,
M.
,
Özer
,
E.
, and
Yılmaz
,
A. E.
,
2021
, “
A six Parameter Single Diode Model for Photovoltaic Modules
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011012
.
15.
Deotti
,
L. M. P.
,
Pereira
,
J. L. R.
, and
da Silva Júnior
,
I. C.
,
2020
, “
Parameter Extraction of Photovoltaic Models Using an Enhanced Lévy Flight bat Algorithm
,”
Energy Convers. Manage.
,
221
(
2
), p.
113114
.
16.
Lo Brano
,
V.
, and
Ciulla
,
G.
,
2013
, “
An Efficient Analytical Approach for Obtaining a Five Parameters Model of Photovoltaic Modules Using Only Reference Data
,”
Appl. Energy
,
111
, pp.
894
903
.
17.
Cardenas
,
A. A.
,
Carrasco
,
M.
,
Mancilla-David
,
F.
,
Street
,
A.
, and
Cardenas
,
R.
,
2017
, “
Experimental Parameter Extraction in the Single-Diode Photovoltaic Model via a Reduced-Space Search
,”
IEEE Trans. Ind. Electron.
,
64
(
2
), pp.
1468
1476
.
18.
Feng
,
X.
,
Qing
,
X.
,
Chung
,
C. Y.
,
Qiao
,
H.
,
Wang
,
X.
, and
Zhao
,
X.
,
2016
, “
A Simple Parameter Estimation Approach to Modeling of Photovoltaic Modules Based on Datasheet Values
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051010
.
19.
De Soto
,
W.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
2006
, “
Improvement and Validation of a Model for Photovoltaic Array Performance
,”
Sol. Energy
,
80
(
1
), pp.
78
88
.
20.
Laudani
,
A.
,
Mancilla-David
,
F.
,
Riganti-Fulginei
,
F.
, and
Salvini
,
A.
,
2013
, “
Reduced-Form of the Photovoltaic Five-Parameter Model for Efficient Computation of Parameters
,”
Sol. Energy
,
97
, pp.
122
127
.
21.
Chin
,
V. J.
,
Salam
,
Z.
, and
Ishaque
,
K.
,
2015
, “
Cell Modelling and Model Parameters Estimation Techniques for Photovoltaic Simulator Application: A Review
,”
Appl. Energy
,
154
, pp.
500
519
.
22.
Premalatha
,
L.
,
Abd Rahim
,
N.
, and
Fathi
,
M.
,
2016
, “
Performance Evaluation of Two Photovoltaic Cell Technologies in Fluctuating Weather Conditions, Using EN50530 Test Procedure
,”
ASME J. Sol. Energy Eng.
,
138
(
2
), p.
021001
.
23.
Nashih
,
S. K.
,
Fernandes
,
C. A. F.
,
Torres
,
J. P. N.
,
Gomes
,
J.
, and
Costa Branco
,
P. J.
,
2016
, “
Validation of a Simulation Model for Analysis of Shading Effects on Photovoltaic Panels
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
044503
.
24.
Rasool
,
F.
,
Drieberg
,
M.
,
Badruddin
,
N.
, and
Mahinder Singh
,
B. S.
,
2017
, “
PV Panel Modeling With Improved Parameter Extraction Technique
,”
Sol. Energy
,
153
, pp.
519
530
.
25.
Xiong
,
G.
,
Zhang
,
J.
,
Shi
,
D.
, and
He
,
Y.
,
2018
, “
Parameter Extraction of Solar Photovoltaic Models Using an Improved Whale Optimization Algorithm
,”
Energy Convers. Manage.
,
174
, pp.
388
405
.
26.
Lun
,
S. X.
,
Du
,
C. J.
,
Yang
,
G. H.
,
Wang
,
S.
,
Guo
,
T. T.
,
Sang
,
J. S.
, and
Li
,
J. P.
,
2013
, “
An Explicit Approximate I–V Characteristic Model of a Solar Cell Based on Padé Approximants
,”
Sol. Energy
,
92
, pp.
147
159
.
27.
Jain
,
A.
,
2004
, “
Exact Analytical Solutions of the Parameters of Real Solar Cells Using Lambert W-Function
,”
Sol. Energy Mater. Sol. Cells
,
81
(
2
), pp.
269
277
.
28.
Lun
,
S. X.
,
Du
,
C. J.
,
Guo
,
T. T.
,
Wang
,
S.
,
Sang
,
J. S.
, and
Li
,
J. P.
,
2013
, “
A New Explicit i-v Model of a Solar Cell Based on Taylor’s Series Expansion
,”
Sol. Energy
,
94
, pp.
221
232
.
29.
Bencherif
,
M.
, and
Brahmi
,
B. N.
,
2018
, “
Accurate Method for Loss Parameter Extraction of Solar Panels
,”
ASME J. Sol. Energy Eng.
,
140
(
2
), p.
021007
.
30.
Petrone
,
G.
, and
Spagnuolo
,
G.
,
2015
, “
Parameters Identification of the Single-Diode Model for Amorphous Photovoltaic Panels
,”
Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP)
,
IEEE
, pp.
105
109
.
31.
Easwarakhanthan
,
T.
,
Bottin
,
J.
,
Bouhouch
,
I.
, and
Boutrit
,
C.
,
1986
, “
Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters With Microcomputers
,”
Int. J. Sol. Energy
,
4
(
1
), pp.
1
12
.
32.
Tossa
,
A. K.
,
Soro
,
Y. M.
,
Azoumah
,
Y.
, and
Yamegueu
,
D.
,
2014
, “
A New Approach to Estimate the Performance and Energy Productivity of Photovoltaic Modules in Real Operating Conditions
,”
Sol. Energy
,
110
, pp.
543
560
.
33.
Jordehi
,
A. R.
,
2016
, “
Time Varying Acceleration Coefficients Particle Swarm Optimisation (TVACPSO): A New Optimisation Algorithm for Estimating Parameters of PV Cells and Modules
,”
Energy Convers. Manage.
,
129
, pp.
262
274
.
34.
Karatepe
,
E.
,
Boztepe
,
M.
, and
Colak
,
M.
,
2006
, “
Neural Network Based Solar Cell Model
,”
Energy Convers. Manage.
,
47
(
9–10
), pp.
1159
1178
.
35.
Jamadi
,
M.
,
Merrikh-Bayat
,
F.
, and
Bigdeli
,
M.
,
2016
, “
Very Accurate Parameter Estimation of Single- and Double-Diode Solar Cell Models Using a Modified Artificial Bee Colony Algorithm
,”
Int. J. Energy Environ. Eng.
,
7
(
1
), pp.
13
25
.
36.
Louzazni
,
M.
,
Khouya
,
A.
,
Amechnoue
,
K.
,
Gandelli
,
A.
,
Mussetta
,
M.
, and
Crăciunescu
,
A.
,
2018
, “
Metaheuristic Algorithm for Photovoltaic Parameters: Comparative Study and Prediction With a Firefly Algorithm
,”
Appl. Sci.
,
8
(
3
), p.
339
.
37.
Askarzadeh
,
A.
, and
Rezazadeh
,
A.
,
2013
, “
Extraction of Maximum Power Point in Solar Cells Using Bird Mating Optimizer-Based Parameters Identification Approach
,”
Sol. Energy
,
90
, pp.
123
133
.
38.
Abdul Kadir
,
A. F.
,
Khatib
,
T.
,
Lii
,
L. S.
, and
Hassan
,
E. E.
,
2019
, “
Optimal Placement and Sizing of Photovoltaic Based Distributed Generation Considering Costs of Operation Planning of Monocrystalline and Thin-Film Technologies
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011017
.
39.
Sirjani
,
R.
, and
Shareef
,
H.
,
2016
, “
Parameter Extraction of Solar Cell Models Using the Lightning Search Algorithm in Different Weather Conditions
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
041007
.
40.
Ridha
,
H. M.
,
2020
, “
Parameters Extraction of Single and Double Diodes Photovoltaic Models Using Marine Predators Algorithm and Lambert W Function
,”
Sol. Energy
,
209
, pp.
674
693
.
41.
Gao
,
X.
,
Cui
,
Y.
,
Hu
,
J.
,
Xu
,
G.
,
Wang
,
Z.
,
Qu
,
J.
, and
Wang
,
H.
,
2018
, “
Parameter Extraction of Solar Cell Models Using Improved Shuffled Complex Evolution Algorithm
,”
Energy Convers. Manage.
,
157
, pp.
460
479
.
42.
Chen
,
X.
, and
Yu
,
K.
,
2019
, “
Hybridizing Cuckoo Search Algorithm With Biogeography-Based Optimization for Estimating Photovoltaic Model Parameters
,”
Sol. Energy
,
180
, pp.
192
206
.
43.
Liang
,
J.
,
Ge
,
S.
,
Qu
,
B.
,
Yu
,
K.
,
Liu
,
F.
,
Yang
,
H.
,
Wei
,
P.
, and
Li
,
Z.
,
2020
, “
Classified Perturbation Mutation Based Particle Swarm Optimization Algorithm for Parameters Extraction of Photovoltaic Models
,”
Energy Convers. Manage.
,
203
, p.
112138
.
44.
Mughal
,
M. A.
,
Ma
,
Q.
, and
Xiao
,
C.
,
2017
, “
Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing
,”
Energies
,
10
(
8
), p.
1213
.
45.
Nunes
,
H. G. G.
,
Pombo
,
J. A. N.
,
Mariano
,
S. J. P. S.
,
Calado
,
M. R. A.
, and
Felippe de Souza
,
J. A. M.
,
2018
, “
A new High Performance Method for Determining the Parameters of PV Cells and Modules Based on Guaranteed Convergence Particle Swarm Optimization
,”
Appl. Energy
,
211
, pp.
774
791
.
46.
Xu
,
S.
, and
Wang
,
Y.
,
2017
, “
Parameter Estimation of Photovoltaic Modules Using a Hybrid Flower Pollination Algorithm
,”
Energy Convers. Manage.
,
144
, pp.
53
68
.
47.
Nunes
,
H. G. G.
,
Pombo
,
J. A. N.
,
Bento
,
P. M. R.
,
Mariano
,
S. J. P. S.
, and
Calado
,
M. R. A.
,
2019
, “
Collaborative Swarm Intelligence to Estimate PV Parameters
,”
Energy Convers. Manage.
,
185
, pp.
866
890
.
48.
Nunes
,
H. G. G.
,
Silva
,
P. N. C.
,
Pombo
,
J. A. N.
,
Mariano
,
S. J. P. S.
, and
Calado
,
M. R. A.
,
2020
, “
Multiswarm Spiral Leader Particle Swarm Optimisation Algorithm for PV Parameter Identification
,”
Energy Convers. Manage.
,
225
, p.
113388
.
49.
Muhammad
,
F. F.
,
Yahya
,
M. Y.
,
Hameed
,
S. S.
,
Aziz
,
F.
,
Sulaiman
,
K.
,
Rasheed
,
M. A.
,
Ahmad
,
Z.
, and
Hu
,
X.
,
2017
, “
Employment of Single-Diode Model to Elucidate the Variations in Photovoltaic Parameters Under Different Electrical and Thermal Conditions
,”
PLoS One
,
12
(
8
), p.
e0182925
.
50.
Marco Tina
,
G.
,
2017
, “
Simulation Model of Photovoltaic and Photovoltaic/Thermal Module/String Under Nonuniform Distribution of Irradiance and Temperature
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021013
.
51.
Bany Mousa
,
O. M.
, and
Taylor
,
R. A.
,
2019
, “
A Broad Comparison of Solar Photovoltaic and Thermal Technologies for Industrial Heating Applications
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011002
.
52.
Humada
,
A. M.
,
Hojabri
,
M.
,
Mekhilef
,
S.
, and
Hamada
,
H. M.
,
2016
, “
Solar Cell Parameters Extraction Based on Single and Double-Diode Models: A Review
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
494
509
.
53.
Ma
,
T.
,
Gu
,
W.
,
Shen
,
L.
, and
Li
,
M.
,
2019
, “
An Improved and Comprehensive Mathematical Model for Solar Photovoltaic Modules Under Real Operating Conditions
,”
Sol. Energy
,
184
, pp.
292
304
.
54.
Ridha
,
H. M.
,
Heidari
,
A. A.
,
Wang
,
M.
, and
Chen
,
H.
,
2020
, “
Boosted Mutation-Based Harris Hawks Optimizer for Parameters Identification of Single-Diode Solar Cell Models
,”
Energy Convers. Manage.
,
209
, p.
112660
.
55.
Oliva
,
D.
,
Abd El Aziz
,
M.
, and
Ella Hassanien
,
A.
,
2017
, “
Parameter Estimation of Photovoltaic Cells Using an Improved Chaotic Whale Optimization Algorithm
,”
Appl. Energy
,
200
, pp.
141
154
.
56.
Dkhichi
,
F.
,
Oukarfi
,
B.
,
Fakkar
,
A.
, and
Belbounaguia
,
N.
,
2014
, “
Parameter Identification of Solar Cell Model Using Levenberg–Marquardt Algorithm Combined With Simulated Annealing
,”
Sol. Energy
,
110
, pp.
781
788
.
57.
Chouder
,
A.
, and
Silvestre
,
S.
,
2009
, “
Analysis Model of Mismatch Power Losses in PV Systems
,”
ASME J. Sol. Energy Eng.
,
131
(
2
), p.
024504
.
58.
Muhammadsharif
,
F. F.
,
Hashim
,
S.
,
Hameed
,
S. S.
,
Ghoshal
,
S. K.
,
Abdullah
,
I. K.
,
Macdonald
,
J. E.
, and
Yahya
,
M. Y.
,
2019
, “
Brent’s Algorithm Based New Computational Approach for Accurate Determination of Single-Diode Model Parameters to Simulate Solar Cells and Modules
,”
Sol. Energy
,
193
, pp.
782
798
.
59.
Tong
,
N. T.
, and
Pora
,
W.
,
2016
, “
A Parameter Extraction Technique Exploiting Intrinsic Properties of Solar Cells
,”
Appl. Energy
,
176
, pp.
104
115
.
60.
Kichou
,
S.
,
Silvestre
,
S.
,
Guglielminotti
,
L.
,
Mora-López
,
L.
, and
Muñoz-Cerón
,
E.
,
2016
, “
Comparison of Two PV Array Models for the Simulation of PV Systems Using Five Different Algorithms for the Parameters Identification
,”
Renewable Energy
,
99
, pp.
270
279
.
61.
Kata
,
N.
,
Diouf
,
D.
,
Soro
,
Y. M.
,
Darga
,
A.
, and
Maiga
,
A. S.
,
2018
, “
Module Parameter Extraction and Simulation With LTSpice Software Model in Sub-Saharan Outdoor Conditions
,”
Afr. J. Environ. Sci. Technol.
,
12
(
12
), pp.
523
531
.
62.
Li
,
S.
,
Gong
,
W.
,
Yan
,
X.
,
Hu
,
C.
,
Bai
,
D.
, and
Wang
,
L.
,
2019
, “
Parameter Estimation of Photovoltaic Models With Memetic Adaptive Differential Evolution
,”
Sol. Energy
,
190
, pp.
465
474
.
63.
Li
,
J.
,
Gao
,
X.
,
Cui
,
Y.
,
Hu
,
J.
,
Xu
,
G.
, and
Zhang
,
Z.
,
2020
, “
Accurate, Efficient and Reliable Parameter Extraction of PEM Fuel Cells Using Shuffled Multi-Simplexes Search Algorithm
,”
Energy Convers. Manage.
,
206
, p.
112501
.
64.
El-Fergany
,
A. A.
,
2021
, “
Parameters Identification of PV Model Using Improved Slime Mould Optimizer and Lambert W-Function
,”
Energy Rep.
,
7
, pp.
875
887
.
65.
Li
,
S.
,
Gu
,
Q.
,
Gong
,
W.
, and
Ning
,
B.
,
2020
, “
An Enhanced Adaptive Differential Evolution Algorithm for Parameter Extraction of Photovoltaic Models
,”
Energy Convers. Manage.
,
205
, p.
112443
.
66.
Yu
,
K.
,
Qu
,
B.
,
Yue
,
C.
,
Ge
,
S.
,
Chen
,
X.
, and
Liang
,
J.
,
2019
, “
A Performance-Guided JAYA Algorithm for Parameters Identification of Photovoltaic Cell and Module
,”
Appl. Energy
,
237
, pp.
241
257
.
67.
Yu
,
K.
,
Liang
,
J. J.
,
Qu
,
B. Y.
,
Cheng
,
Z.
, and
Wang
,
H.
,
2018
, “
Multiple Learning Backtracking Search Algorithm for Estimating Parameters of Photovoltaic Models
,”
Appl. Energy
,
226
, pp.
408
422
.
68.
Chen
,
X.
,
Xu
,
B.
,
Mei
,
C.
,
Ding
,
Y.
, and
Li
,
K.
,
2018
, “
Teaching–Learning–Based Artificial Bee Colony for Solar Photovoltaic Parameter Estimation
,”
Appl. Energy
,
212
, pp.
1578
1588
.
69.
Yu
,
K.
,
Liang
,
J. J.
,
Qu
,
B. Y.
,
Chen
,
X.
, and
Wang
,
H.
,
2017
, “
Parameters Identification of Photovoltaic Models Using an Improved JAYA Optimization Algorithm
,”
Energy Convers. Manage.
,
150
, pp.
742
753
.
70.
Chen
,
X.
,
Yu
,
K.
,
Du
,
W.
,
Zhao
,
W.
, and
Liu
,
G.
,
2016
, “
Parameters Identification of Solar Cell Models Using Generalized Oppositional Teaching Learning Based Optimization
,”
Energy
,
99
, pp.
170
180
.
71.
Chen
,
Z.
,
Wu
,
L.
,
Lin
,
P.
,
Wu
,
Y.
, and
Cheng
,
S.
,
2016
, “
Parameters Identification of Photovoltaic Models Using Hybrid Adaptive Nelder-Mead Simplex Algorithm Based on Eagle Strategy
,”
Appl. Energy
,
182
, pp.
47
57
.
72.
Gong
,
W.
, and
Cai
,
Z.
,
2013
, “
Parameter Extraction of Solar Cell Models Using Repaired Adaptive Differential Evolution
,”
Sol. Energy
,
94
, pp.
209
220
.
73.
Zhang
,
J.
, and
Sanderson
,
A. C.
,
2009
, “
JADE: Adaptive Differential Evolution With Optional External Archive
,”
IEEE Trans. Evol. Comput.
,
13
(
5
), pp.
945
958
.
74.
Chakri
,
A.
,
Khelif
,
R.
,
Benouaret
,
M.
, and
Yang
,
X. S.
,
2017
, “
New Directional Bat Algorithm for Continuous Optimization Problems
,”
Expert Syst. Appl.
,
69
, pp.
159
175
.
75.
Meng
,
X. B.
,
Gao
,
X. Z.
,
Liu
,
Y.
, and
Zhang
,
H.
,
2015
, “
A Novel bat Algorithm With Habitat Selection and Doppler Effect in Echoes for Optimization
,”
Expert Syst. Appl.
,
42
(
17–18
), pp.
6350
6364
.
76.
Muhammad
,
F. F.
,
Karim Sangawi
,
A. W.
,
Hashim
,
S.
,
Ghoshal
,
S. K.
,
Abdullah
,
I. K.
,
Hameed
,
S. S.
, and
Pandolfi
,
A.
,
2019
, “
Simple and Efficient Estimation of Photovoltaic Cells and Modules Parameters Using Approximation and Correction Technique
,”
PLoS One
,
14
(
5
), p.
e0216201
.
77.
Yang
,
X.
, and
Hossein Gandomi
,
A.
,
2012
, “
Bat Algorithm: A Novel Approach for Global Engineering Optimization
,”
Eng. Comput.
,
29
(
5
), pp.
464
483
.
78.
Zhang
,
Y.
,
Ma
,
M.
, and
Jin
,
Z.
,
2020
, “
Backtracking Search Algorithm With Competitive Learning for Identification of Unknown Parameters of Photovoltaic Systems
,”
Expert Syst. Appl.
,
160
, p.
113750
.
79.
Agwa
,
A. M.
,
El-Fergany
,
A. A.
, and
Maksoud
,
H. A.
,
2020
, “
Electrical Characterization of Photovoltaic Modules Using Farmland Fertility Optimizer
,”
Energy Convers. Manage.
,
217
, p.
112990
.
80.
Chander
,
S.
,
Purohit
,
A.
,
Sharma
,
A.
,
Arvind
,
Nehra
,
S. P.
, and
Dhaka
,
M. S.
,
2015
, “
A Study on Photovoltaic Parameters of Mono-Crystalline Silicon Solar Cell With Cell Temperature
,”
Energy Rep.
,
1
, pp.
104
109
.
81.
Merchaoui
,
M.
,
Sakly
,
A.
, and
Mimouni
,
M. F.
,
2018
, “
Particle Swarm Optimisation With Adaptive Mutation Strategy for Photovoltaic Solar Cell/Module Parameter Extraction
,”
Energy Convers. Manage.
,
175
, pp.
151
163
.
You do not currently have access to this content.