Abstract

In recent times, the application of small-scale horizontal axis wind turbines (SHAWTs) has drawn interest in certain areas where the energy demand is minimal. These turbines, operating mostly at low Reynolds number (Re) and low tip speed ratio (λ) conditions, can be used as stand-alone systems. The present study aims at the design, development, and testing of a series of SHAWT models. On the basis of aerodynamic characteristics, four SHAWT models viz., M1, M2, M3, and M4 composed of E216, SG6043, NACA63415, and NACA0012 airfoils, respectively, have been developed. Initially, the rotors are designed through blade element momentum theory (BEMT), and their power coefficient has been evaluated. Thence, the developed rotors are tested in a low-speed wind tunnel to find their rotational frequency, power, and power coefficient at design and off-design conditions. From BEMT analysis, M1 shows a maximum power coefficient (Cpmax) of 0.37 at λ = 2.5. The subsequent wind tunnel tests on M1, M2, M3, and M4 at 9 m/s show the Cpmax values as 0.34, 0.30, 0.28, and 0.156, respectively. Thus, from the experiments, the M1 rotor is found to be favorable than the other three rotors, and its Cpmax value is found to be about 92% of BEMT prediction. Further, the effect of pitch angle (θp) on Cp of the model rotors is also examined, where M1 is found to produce a satisfactory performance within ±5 deg from the design pitch angle (θp,design).

References

1.
Sadorsky
,
P.
,
2021
, “
Wind Energy for Sustainable Development: Driving Factors and Future Outlook
,”
J. Cleaner Prod.
,
289
, p.
125779
.
2.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
050801
.
3.
Tummala
,
A.
,
Velamati
,
R. K.
,
Sinha
,
D. K.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renew. Sust. Energy Rev.
,
56
, pp.
1351
1371
.
4.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051207
.
5.
Saha
,
U. K.
,
Thotla
,
S.
, and
Maity
,
D.
,
2008
, “
Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8–9
), pp.
1359
1375
.
6.
Jain
,
S.
, and
Saha
,
U. K.
,
2020
, “
The State-of-the-Art Technology of H-Type Darrieus Wind Turbine Rotors
,”
ASME J. Energy Res. Technol.
,
142
(
3
), p.
030801
.
7.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
8.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Drag and Lift Characteristics of a Novel Elliptical-Bladed Savonius Rotor With Vent Augmenters
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051007
.
9.
Chen
,
L.
,
Ponta
,
F. L.
, and
Lago
,
L. I.
,
2011
, “
Perspectives on Innovative Concepts in Wind-Power Generation
,”
Energy Sust. Dev.
,
15
(
4
), pp.
398
410
.
10.
Elavarsan
,
R. M.
,
2019
, “
Comprehensive Review on India’s Growth in Renewable Energy Technologies in Comparison With Other Prominent Renewable Energy Based Countries
,”
ASME J. Sol Energy Eng.
,
142
(
3
), p.
030801
.
11.
Sarma
,
J.
,
Jain
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U.K.
2021
, “
Hybrid/Combined Darrieus-Savonius Wind Turbines: Erstwhile Development and Future Prognosis
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
050801
.
12.
Iniesta
,
J. B.
, and
Barroso
,
M. M.
,
2015
, “
Assessment of Offshore Wind Energy Projects in Denmark—A Comparative Study with Onshore Projects Based Onshore Projects Based on Regulatory Real Options
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041009
.
13.
Hyvärinen
,
A.
, and
Segalini
,
A.
,
2017
, “
Effects From Complex Terrain on Wind-Turbine Performance
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051205
.
14.
Wang
,
C.
, and
Prinn
,
R. G.
,
2010
, “
Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms
,”
Atmos. Chem. Phys.
,
10
(
4
), pp.
2053
2061
.
15.
Sunden
,
B.
, and
Wu
,
Z.
,
2017
, “
On Heat Transfer Issues for Wind Energy Systems
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051201
.
16.
Hernandez
,
C. O. M.
,
Shadman
,
M.
,
Amiri
,
M. M.
,
Silva
,
C.
,
Estefen
,
S. F.
, and
Rovere
,
E. L.
,
2021
, “
Environmental Impacts of Offshore Wind Installation, Operation And Maintenance, and Decommissioning Activities: A Case Study Of Brazil
,”
Renewable Sustainable Energy Rev.
,
144
, p.
110994
.
17.
Giguere
,
P.
, and
Selig
,
M. S.
,
1997
, “
Low Reynolds Number Airfoils for Small Horizontal Axis Wind Turbines
,”
Wind Eng.
,
21
(
6
), pp.
367
380
. http://www.jstor.org/stable/43749658
18.
Giguere
,
P.
, and
Selig
,
M. S.
,
1999
, “
Aerodynamic Effects of Leading-Edge Tape on Aerofoils at Low Reynolds Numbers
,”
Wind Energy
,
2
(
3
), pp.
125
136
.
19.
Selig
,
M. S.
, and
McGranahan
,
B. D.
,
2004
, “Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines,”
Urbana, IL
,
University of Illinois at Urbana-Champaign
. https://m-selig.ae.illinois.edu/pubs/SeligMcGranahan-2004-NREL-SR-500-34515-SixNRLAirfoils.pdf
20.
Selig
,
M. S.
, and
McGranahan
,
B. D.
,
2004
, “
Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
126
(
4
), pp.
986
1001
.
21.
Singh
,
R. K.
,
Ahmed
,
M. R.
,
Zullah
,
M. A.
, and
Lee
,
Y. H.
,
2012
, “
Design of a Low Reynolds Number Airfoil for Small Horizontal Axis Wind Turbines
,”
Renewable Energy
,
42
, pp.
66
76
.
22.
Singh
,
R. K.
, and
Ahmed
,
M. R.
,
2013
, “
Blade Design and Performance Testing of a Small Wind Turbine Rotor for Low Wind Speed Applications
,”
Renewable Energy
,
50
, pp.
812
819
.
23.
Prabhukhot
,
P. R.
, and
Prabhukhot
,
A. R.
,
2017
, “
Computer Analysis of S822 Aerofoil Section for Blades of Small Wind Turbines at Low Wind Speed
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051008
.
24.
Liu
,
Y.
,
Li
,
P.
,
He
,
W.
, and
Jiang
,
K.
,
2020
, “
Numerical Study of the Effect of Surface Grooves on the Aerodynamic Performance of a NACA 4415 Airfoil for Small Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
206
, p.
104263
.
25.
Freere
,
P.
,
Sacher
,
M.
,
Derricott
,
J
and
Hanson
,
B.
2010
, “
A Low Cost Wind Turbines and Blade Performance
,”
Wind Eng.
,
34
(
3
), pp.
289
302
.
26.
Matsumiya
,
H.
,
Ito
,
R.
,
Kawakami
,
M.
,
Matsushita
,
D.
,
Iida
,
M.
, and
Arakawa
,
C.
,
2010
, “
Field Operation and Track Tests of 1-Kw Small Wind Turbine Under High Wind Conditions
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
011002
.
27.
Refan
,
M.
, and
Hangan
,
H.
,
2012
, “
Aerodynamic Performance of a Small Horizontal Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021013
.
28.
Kishore
,
R. A.
,
Coudron
,
T.
, and
Priya
,
S.
,
2013
, “
Small-Scale Wind Energy Portable Turbine (SWEPT)
,”
J. Wind Eng. Ind. Aerodyn.
,
116
, pp.
21
31
.
29.
Kishore
,
R. A.
, and
Priya
,
S.
,
2013
, “
Design and Experimental Verification of a High Efficiency Small Wind Energy Portable Turbine (SWEPT)
,”
J. Wind Eng. Ind. Aerodyn.
,
118
, pp.
12
19
.
30.
Rocha
,
P. A. C.
,
Rocha
,
H. H. B.
,
Carneiro
,
F. O. M.
,
da Silva
,
M. E. V.
, and
Bueno
,
A. V.
,
2014
, “
k-ω SST (Shear Stress Transport) Turbulence Model Calibration: A Case Study on a Small Scale Horizontal Axis Wind Turbine
,”
Energy
,
65
, pp.
412
418
.
31.
Manwell
,
J. F.
,
Mcgowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
“Wind Energy Explained: Theory, Design and Application
,” 2nd ed.,
Wiley Publication
,
UK
.
32.
Dehouck
,
V.
,
Lateb
,
M.
,
Sacheau
,
J.
, and
Fellouah
,
H.
,
2018
, “
Application of the Blade Element Momentum Theory to Design Horizontal Axis Wind Turbine Blades
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
014501
.
33.
Song
,
Q.
, and
Luitz
,
W. D.
,
2014
, “
Design and Testing of a New Small Wind Turbine Blade
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
034502
.
34.
Siram
,
O.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2022
, “
Wind Tunnel Tests of a Model Small-Scale Horizontal-Axis Wind Turbine Developed From Blade Element Momentum Theory
,”
ASME J. Energy Res. Technol.
,
144
(
6
), p.
064502
.
35.
Siram
,
O.
, and
Sahoo
,
N.
,
2019
, “
Near Wake Regime Study on Wind Turbine Blade Tip Vortex
,”
Paper No: GTINDIA2019-2493, ASME 2019 Gas Turbine India Conference.
Dec. 5–6
,
IIT Madras
. .
36.
Fuglsang
,
P.
,
Bak
,
C.
,
Gaunaa
,
M.
, and
Antoniou
,
I.
,
2004
, “
Design and Verification of the Risø-B1 Airfoil Family for Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
126
(
4
), pp.
1003
1010
.
37.
Butterfield
,
C. P.
,
Scott
,
G.
, and
Musial
,
W.
,
1992
, “
Comparison of Wind Tunnel Airfoil Performance Data with Wind Turbine Blade Data
,”
ASME J. Sol. Energy Eng.
,
114
(
2
), pp.
119
124
.
38.
Bruun
,
H. H.
,
1995
,
Hot-Wire Anemometry: Principles and Signal Analysis
,
Oxford University Press
,
Oxford
.
39.
Treuren
,
K. W. V.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Res. Technol.
,
137
(
5
), p.
051208
.
40.
McTavish
,
S.
,
Feszty
,
D.
, and
Nitzsche
,
F.
,
2013
, “
Evaluating Reynolds Number Effects in Small-Scale Wind Turbine Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
120
, pp.
81
90
.
41.
Liu
,
X.
,
Wang
,
L.
, and
Tang
,
X.
,
2013
, “
Optimized Linearization of Chord and Twist Angle Profiles for Fixed-Pitch Fixed-Speed Wind Turbine Blades
,”
Renewable Energy
,
57
, pp.
111
119
.
42.
Ismail
,
K. A. R.
,
Canale
,
T.
, and
Lino
,
F. A. M.
,
2022
, “
Effects of The Airfoil Section, Chord and Twist Angle Distributions on the Starting Torque of Small Horizontal Axis Wind Turbine
,”
ASME J. Energy Res. Technol.
,
144
(
5
), p.
051301
.
43.
Hasan
,
A. S.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
ASME J. Energy Res. Technol.
,
141
(
5
), p.
051209
.
44.
Ossmann
,
D.
,
Seiler
,
P.
,
Milliren
,
C.
, and
Dander
,
A.
,
2021
, “
Field Testing of Multi-Variable Individual Pitch Control on a Utility-Scale Wind Turbine
,”
Renewable Energy
,
170
, pp.
1245
1256
.
45.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical-Axis Wind Turbine
,”
Renewable Energy
,
35
(
2
), pp.
412
422
.
46.
Chen
,
T. Y.
, and
Liou
,
L. R.
,
2011
, “
Blockage Corrections in Wind Tunnel Tests of Small Horizontal-Axis Wind Turbines
,”
Exp. Therm. Fluid. Sci.
,
35
(
3
), pp.
565
569
.
47.
Pope
,
A.
, and
Harper
,
J. J.
,
1966
, “Low Speed Wind Tunnel Testing,”
John Wiley and Sons
,
New York
.
You do not currently have access to this content.