Abstract

Despite the growth in the global cumulative installed photovoltaic (PV) capacity, the efficiency of PV panels is greatly reduced due to dust accumulation and soiling. To enhance this efficiency, consideration must be given to the factors that affect dust deposition ranging from panel configuration to weather conditions. This research aims to determine which of those factors contribute significantly to dust accumulation and model this behavior. Numerical experiments were performed to study those factors based on a planned Design of Experiments (DOE). Dust particle size, dust amount, wind speed, wind direction, and the solar panel tilt angle are the five factors examined using computational fluid dynamics (CFD) simulations. Statistical and regression analyses were then used to determine the most significant factors and model their effect on the deposition rate. Results revealed that the dust diameter, panel tilt angle, and wind speed influence the deposition rate the most. Dust diameter is positively correlated to the dust deposition rate. Larger dust particles have a lower deposition rate as the wind velocity increases. In addition, smaller dust particles will always give the lowest dust deposition rate irrespective of the tilt angle. It was also seen that the maximum dust deposition rate occurs at a panel’s tilt angle of approximately 50 deg regardless of the wind speed or the dust particle size. The developed mathematical model shows the factors contributing to soiling and panel efficiency reduction over exposure time. This model can be used further to optimize panel cleaning frequency.

References

1.
Al Garni
,
H. Z.
, and
Awasthi
,
A.
,
2017
, “
Solar PV Power Plant Site Selection Using a GIS-AHP Based Approach With Application in Saudi Arabia
,”
Appl. Energy
,
206
(
1
), pp.
1225
1240
.
2.
Khatib
,
T.
,
Kazem
,
H. A.
,
Sopian
,
K.
,
Buttinger
,
F.
,
Elmenreich
,
W.
, and
Albusaidi
,
A. S.
,
2013
, “
Effect of Dust Deposition on the Performance of Multi-crystalline Photovoltaic Modules Based on Experimental Measurements
,”
Int. J. Renew. Energy Res.
,
3
(
4
), pp.
850
853
.
3.
Cabanillas
,
R. E.
, and
Munguía
,
H.
,
2011
, “
Dust Accumulation Effect on Efficiency of Si Photovoltaic Modules
,”
J. Renewable Sustainable Energy Energy
,
3
(
4
), p.
043114
.
4.
AlBusairi
,
H. A.
, and
Möller
,
H. J.
,
2010
, “
Performance Evaluation of CdTe PV Modules Under Natural Outdoor Conditions in Kuwait
,”
Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion
,
Valencia, Spain
,
Sept. 6–10
, pp.
3468
3470
.
5.
Jamil
,
W. J.
,
Abdul Rahman
,
H.
,
Shaari
,
S.
, and
Salam
,
Z.
,
2017
, “
Performance Degradation of Photovoltaic Power System: Review on Mitigation Methods
,”
Renewable Sustainable Energy Rev.
,
67
(
1
), pp.
876
891
.
6.
Sarver
,
T.
,
Al-Qaraghuli
,
A.
, and
Kazmerski
,
L. L.
,
2013
, “
A Comprehensive Review of the Impact of Dust on the Use of Solar Energy: History, Investigations, Results, Literature, and Mitigation Approaches
,”
Renewable Sustainable Energy Rev.
,
22
(
1
), pp.
698
733
.
7.
Lu
,
H.
,
Lu
,
L.
, and
Wang
,
Y.
,
2016
, “
Numerical Investigation of Dust Pollution on a Solar Photovoltaic (PV) System Mounted on an Isolated Building
,”
Appl. Energy
,
180
(
1
), pp.
27
36
.
8.
Said
,
S. A.
,
Hassan
,
G.
,
Walwil
,
H. M.
, and
Al-Aqeeli
,
N.
,
2018
, “
The Effect of Environmental Factors and Dust Accumulation on Photovoltaic Modules and Dust-Accumulation Mitigation Strategies
,”
Renewable Sustainable Energy Rev.
,
82
(
Part 1
), pp.
743
760
.
9.
Lu
,
H.
, and
Zhang
,
L. Z.
,
2018
, “
Numerical Study of Dry Deposition of Monodisperse and Polydisperse Dust on Building-Mounted Solar Photovoltaic Panels With Different Roof Inclinations
,”
Sol. Energy
,
176
(
1
), pp.
535
544
.
10.
Lu
,
H.
,
Lu
,
L.
,
Zhang
,
L. Z.
, and
Pan
,
A.
,
2019
, “
Numerical Study on Polydispersed Dust Pollution Process on Solar Photovoltaic Panels Mounted on a Building Roof
,”
Energy Procedia
,
158
(
1
), pp.
879
884
.
11.
Chiteka
,
K.
,
Arora
,
R.
, and
Sridhara
,
S.
,
2021
, “
A Method to Predict Fouling on Multi-storey Building Mounted Solar Photovoltaic Panels: A Computational Fluid Dynamics Approach
,”
J. Therm. Eng.
,
7
(
3
), pp.
700
714
.
12.
Lu
,
H.
, and
Zhao
,
W.
,
2018
, “
Effects of Particle Sizes and Tilt Angles on Dust Deposition Characteristics of a Ground-Mounted Solar Photovoltaic System
,”
Appl. Energy
,
220
, pp.
514
526
.
13.
Lu
,
H.
, and
Zhao
,
W.
,
2019
, “
CFD Prediction of Dust Pollution and Impact on an Isolated Groundmounted Solar Photovoltaic System
,”
Renewable Energy
,
131
(
1
), pp.
829
840
.
14.
Chiteka
,
K.
,
Arora
,
R.
,
Sridhara
,
S.
, and
Enweremadu
,
C.
,
2021
, “
Influence of Irradiance Incidence Angle and Installation Configuration on the Deposition of Dust and Dust-Shading of a Photovoltaic Array
,”
Energy
,
216
(
1
), p.
19289
.
15.
Wu
,
Z.
,
Li
,
W.
,
Kuka
,
S.
, and
Alkahtani
,
M.
,
2019
, “
Analysis of Dust Deposition on PV Arrays by CFD Simulation
,”
Proceeding of 45th Annual Conference of the IEEE Industrial Electronics Society
,
Lisbon, Portugal
,
Oct. 14–17
, pp.
5439
5443
.
16.
Liu
,
X.
,
Yue
,
S.
,
Lu
,
L.
, and
Li
,
J.
,
2021
, “
Settlement–Adhesion Evolution Mechanism of Dust Particles in the Flow Field of Photovoltaic Mirrors at Night
,”
Chem. Eng. Res. Des.
,
168
(
1
), pp.
146
155
.
17.
Abdallah
,
M.
,
Khaiyat
,
A.
,
Basaheeh
,
A.
,
Kotsovos
,
K.
,
Ballard
,
I.
,
AlSaggaf
,
A.
,
Gereige
,
I.
, and
Théron
,
R.
,
2021
, “
Soiling Loss Rate Measurements of Photovoltaic Modules in a Hot and Humid Desert Environment
,”
ASME J. Sol. Energy. Eng.
,
143
(
3
), p.
031005
.
18.
Lu
,
H.
, and
Zhang
,
L. Z.
,
2019
, “
Influences of Dust Deposition on Ground-Mounted Solar Photovoltaic Arrays: A CFD Simulation Study
,”
Renewable Energy
,
135
(
1
), pp.
21
31
.
19.
Chiteka
,
K.
,
Arora
,
R.
,
Sridhara
,
S. N.
, and
Enweremadu
,
C. C.
,
2020
, “
Numerical Investigation of Soiling of Multi-row Rooftop Solar PV Arrays
,”
Int. J. Energy Environ. Eng.
,
11
(
1
), pp.
439
458
.
20.
Chiteka
,
K.
,
Sridhara
,
S.
,
Arora
,
R.
, and
Enweremadu
,
C.
,
2020
, “
Optimum Installation Configuration for Mitigation of Soiling in Non-tracking Solar Photovoltaic Arrays
,”
Proceedings of the National Conference on Developments in Renewable Energy and Future Trends in Mechanical Engineering
,
Gurugram, Haryana
,
Feb. 2
.
21.
Chiteka
,
K.
,
Arora
,
R.
, and
Jain
,
V.
,
2021
, “
CFD Prediction of Dust Deposition and Installation Parametric Optimisation for Soiling Mitigation in Non-tracking Solar PV Modules
,”
Int. J. Ambient Energy
,
42
(
11
), pp.
1307
1320
.
22.
Moghimi
,
M.
, and
Ahmadi
,
G.
,
2018
, “
Wind Barriers Optimization for Minimizing Collector Mirror Soiling in a Parabolic Trough Collector Plant
,”
Appl. Energy
,
225
(
1
), pp.
413
423
.
23.
Chiteka
,
K.
,
Arora
,
R.
,
Sridhara
,
S.
, and
Enweremadu
,
C.
,
2021
, “
Optimizing Wind Barrier and Photovoltaic Array Configuration in Soiling Mitigation
,”
Renewable Energy
,
163
(
1
), pp.
225
236
.
24.
Raillani
,
B.
,
Chaatouf
,
D.
,
Salhi
,
M.
,
Amraqui
,
S.
, and
Mezrhab
,
A.
,
2022
, “
Effect of Wind Barrier Height on the Dust Deposition Rate of a Ground-Mounted Photovoltaic Panel
,”
Sustain. Energy Technol. Assess.
,
52
(
Part A
), p.
102035
.
25.
Ribeiro
,
K.
,
Santos
,
R.
,
Saraiva
,
E.
, and
Rajagopal
,
R.
,
2021
, “
A Statistical Methodology to Estimate Soiling Losses on Photovoltaic Solar Plants
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
064501
.
26.
Ansys, Inc.
,
2022
,
Ansys Fluent Theory Guide
,
Ansys Inc.
,
Canonsburg, PA
.
You do not currently have access to this content.