Abstract

Recently, many studies have reported that a curved solar air heater (CSAH) performs better than a conventional flat SAH without using any extra material. It only requires geometrical modification. The present investigation is a two-dimensional numerical study of flow, heat transfer, and entropy generation characteristics of a CSAH having a sinusoidal profile absorber plate. Reynolds number (Re) and relative roughness pitch (λ/a) have been varied from 3800 to 18,000 and 7.143 to 17.857, respectively, while keeping the value of relative roughness height (a/Dh) at 0.042. The finite volume method (FVM) and SST k–ω model have been used to solve the governing equations. The average Nusselt number and average friction factor have been calculated to find the thermo-hydraulic performance parameter (THPP), which further helped determine the optimal arrangement of the number of sinusoidal waves in the absorber plate of the SAH. The maximum value of THPP developed with the proposed setup was found to be 5.9778. Turbulent flow features have been represented in the form of contours. Correlations have also been developed for Nuavg_r and favg_r as a function of Re and λ/a. Entropy generation per unit length due to heat transfer and fluid friction has been graphically represented.

References

1.
Singh Yadav
,
A.
, and
Bhagoria
,
J. L.
,
2015
, “
Numerical Investigation of Flow Through an Artificially Roughened Solar Air Heater
,”
Int. J. Ambient Energy
,
36
(
2
), pp.
87
100
.
2.
Prasad
,
K.
, and
Mullick
,
S. C.
,
1983
, “
Heat Transfer Characteristics of a Solar Air Heater Used for Drying Purposes
,”
Appl. Energy
,
13
(
2
), pp.
83
93
.
3.
Prasad
,
B. N.
, and
Saini
,
J. S.
,
1988
, “
Effect of Artificial Roughness on Heat Transfer and Friction Factor in a Solar Air Heater
,”
Sol. Energy
,
41
(
6
), pp.
555
560
.
4.
Gupta
,
D.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
1993
, “
Heat and Fluid Flow in Rectangular Solar Air Heater Ducts Having Transverse Rib Roughness on Absorber Plates
,”
Sol. Energy
,
51
(
1
), pp.
31
37
.
5.
Gupta
,
D.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
1997
, “
Thermohydraueic Performance of Solar Air Heaters With Roughened Absorber Plates
,”
Sol. Energy
,
61
(
1
), pp.
33
42
.
6.
Verma
,
S. K.
, and
Prasad
,
B. N.
,
2000
, “
Investigation for the Optimal Thermohydraulic Performance of Artificially Roughened Solar Air Heaters
,”
Renewable Energy
,
20
(
1
), pp.
19
36
.
7.
Kumar
,
A.
, and
Kim
,
M. H.
,
2016
, “
CFD Analysis on the Thermal Hydraulic Performance of an SAH Duct With Multi V-Shape Roughened Ribs
,”
Energies
,
9
(
6
), p.
415
.
8.
Lanjewar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2011
, “
Heat Transfer and Friction in Solar Air Heater Duct With W-Shaped Rib Roughness on Absorber Plate
,”
Energy
,
36
(
7
), pp.
4531
4541
.
9.
Karmare
,
S. V.
, and
Tikekar
,
A. N.
,
2010
, “
Analysis of Fluid Flow and Heat Transfer in a Rib Grit Roughened Surface Solar Air Heater Using CFD
,”
Sol. Energy
,
84
(
3
), pp.
409
417
.
10.
Jin
,
D.
,
Zhang
,
M.
,
Wang
,
P.
, and
Xu
,
S.
,
2015
, “
Numerical Investigation of Heat Transfer and Fluid Flow in a Solar Air Heater Duct With Multi V-Shaped Ribs on the Absorber Plate
,”
Energy
,
89
, pp.
178
190
.
11.
Deo
,
N. S.
,
Chander
,
S.
, and
Saini
,
J. S.
,
2016
, “
Performance Analysis of Solar Air Heater Duct Roughened With Multigap V-Down Ribs Combined With Staggered Ribs
,”
Renewable Energy
,
91
, pp.
484
500
.
12.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Effect of Roughness Shape on Heat Transfer and Flow Friction Characteristics of Solar Air Heater With Roughened Absorber Plate
,”
WIT Trans. Eng. Sci.
,
53
, pp.
43
51
.
13.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renewable Energy
,
31
(
3
), pp.
317
331
.
14.
Saini
,
S. K.
, and
Saini
,
R. P.
,
2008
, “
Development of Correlations for Nusselt Number and Friction Factor for Solar Air Heater With Roughened Duct Having Arc-Shaped Wire as Artificial Roughness
,”
Sol. Energy
,
82
(
12
), pp.
1118
1130
.
15.
Saini
,
R. P.
, and
Verma
,
J.
,
2008
, “
Heat Transfer and Friction Factor Correlations for a Duct Having Dimple-Shape Artificial Roughness for Solar Air Heaters
,”
Energy
,
33
(
8
), pp.
1277
1287
.
16.
Kumar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2008
, “
Heat Transfer Enhancement in Channel of Solar Air Collector by Using Discrete W-Shaped Artificial Roughened Absorber
,”
19th National & 8th ISHMT-ASME Heat and Mass Transfer Conference
,
Hyderabad, India
,
Jan. 3
.
17.
Kumar
,
S.
, and
Saini
,
R. P.
,
2009
, “
CFD Based Performance Analysis of a Solar Air Heater Duct Provided With Artificial Roughness
,”
Renewable Energy
,
34
(
5
), pp.
1285
1291
.
18.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
.
19.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2020
, “
Thermal Enhancement Study of a Transverse Inverted-T Shaped Ribbed Solar Air Heater
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104922
.
20.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2013
, “
Heat Transfer and Fluid Flow Analysis of Solar Air Heater: A Review of CFD Approach
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
60
79
.
21.
Mahboub
,
C.
,
Moummi
,
N.
,
Brima
,
A.
, and
Moummi
,
A.
,
2016
, “
Experimental Study of New Solar Air Heater Design
,”
Int. J. Green Energy
,
13
(
5
), pp.
521
529
.
22.
Singh
,
A. P.
, and
Singh
,
O. P.
,
2018
, “
Performance Enhancement of a Curved Solar Air Heater Using CFD
,”
Sol. Energy
,
174
, pp.
556
569
.
23.
Singh
,
A. P.
, and
Singh
,
O. P.
,
2019
, “
Thermo-Hydraulic Performance Enhancement of Convex-Concave Natural Convection Solar Air Heaters
,”
Sol. Energy
,
183
, pp.
146
161
.
24.
Gilani
,
S. E.
,
Al-Kayiem
,
H. H.
,
Woldemicheal
,
D. E.
, and
Gilani
,
S. I.
,
2017
, “
Performance Enhancement of Free Convective Solar Air Heater by Pin Protrusions on the Absorber
,”
Sol. Energy
,
151
, pp.
173
185
.
25.
Singh
,
A. P.
, and
Singh
,
O. P.
,
2020
, “
Curved Versus Flat Solar Air Heater: Performance Evaluation Under Diverse Environmental Conditions
,”
Renewable Energy
,
145
, pp.
2056
2073
.
26.
Kumar
,
A.
,
Singh
,
A. P.
, and
Singh
,
O. P.
,
2022
, “
Effect of Channel Designs and Its Optimization for Enhanced Thermo-Hydraulic Performance of Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051009
.
27.
Kumar
,
D.
, and
Layek
,
A.
,
2023
, “
Heat Transfer Augmentation of a Solar Air Heater Using a Twisted V-Shaped Staggered Rib Over the Absorber Plate
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021013
.
28.
Jain
,
S. K.
,
Misra
,
R.
, and
Agrawal
,
G. D.
,
2022
, “
Experimental Investigation and Optimizing the Parameters of a Solar Air Heater Having Broken Arc-Shaped Ribs Using Hybrid Entropy-VIKOR Technique
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061013
.
29.
Kumar
,
D.
, and
Prasad
,
L.
,
2020
, “
Experimental Investigation on Thermal Performance in Three-Sided Solar Air Heaters Having an Alignment of Multi-V and Transverse Wire Roughness on the Absorber Plate
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051011
.
30.
Singh
,
A. P.
,
Kumar
,
A.
, and
Singh
,
O. P.
,
2020
, “
Efficient Design of Curved Solar Air Heater Integrated With Semi-Down Turbulators
,”
Int. J. Therm. Sci.
,
152
, p.
106304
.
31.
Kumar
,
A.
,
Singh
,
A. P.
, and
Singh
,
O. P.
,
2022
, “
Performance Characteristics of a New Curved Double-Pass Counter Flow Solar Air Heater
,”
Energy
,
239
, p.
121886
.
32.
Kumar
,
A.
,
Singh
,
A. P.
, and
Singh
,
O. P.
,
2022
, “
Investigations for Efficient Design of a New Counter Flow Double-Pass Curved Solar Air Heater
,”
Renewable Energy
,
185
, pp.
759
770
.
33.
ASHRAE Standard 93-97
,
1977
,
Method of Testing to Determine the Thermal Performance of Solar Collectors
,
ASHRAE
,
New York
.
34.
Ansys Inc.
,
2013
,
Ansys Fluent 15.0—Theory Guide
,
Ansys Inc.
,
Canonsburg, PA
.
35.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
36.
McAdams
,
W. H.
,
2001
,
Heat Transmission
,
McGraw-Hill
,
New York
.
37.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “Turbulent and Transition Convective Heat Transfer in Ducts,”
Handbook of Single-Phase Convective Heat Transfer
,
S
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
John Wiley & Sons
,
New York
, p.
166
.
38.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.
39.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
John Wiley & Sons
,
New York
.
40.
Alam
,
T.
, and
Kim
,
M. H.
,
2017
, “
Heat Transfer Enhancement in Solar Air Heater Duct With Conical Protrusion Roughness Ribs
,”
Appl. Therm. Eng.
,
126
, pp.
458
469
.
41.
Maithani
,
R.
,
Chamoli
,
S.
,
Kumar
,
A.
, and
Gupta
,
A.
,
2019
, “
Solar Air Heater Duct Roughened With Wavy Delta Winglets: Correlations Development and Parametric Optimization
,”
Heat Mass Transf. und Stoffuebertragung
,
55
(
12
), pp.
3473
3491
.
42.
Choi
,
H. U.
, and
Choi
,
K. H.
,
2020
, “
CFD Analysis on the Heat Transfer and Fluid Flow of Solar Air Heater Having Transverse Triangular Block at the Bottom of Air Duct
,”
Energies
,
13
(
5
), p.
1099
You do not currently have access to this content.