Abstract

The cogeneration system described in this paper is constructed based on a solar-assisted double-effect absorption cogeneration cycle with an adjustable cooling-to-power ratio. As a proposed technique to benefit from the ability to adjust the cooling-to-power ratio, this system is integrated with a cold thermal energy storage system. The procedure described here will be applied to a combined cooling and power system with a thermal energy storage capability for a large medical center in Jeddah, Saudi Arabia. Through an exergoeconomic analysis of the integrated system on a typical summer day in Jeddah, we found that the integrated system could fulfill the cooling and power demands of the medical center under study with an exergetic efficiency of 53.97%. From an economics perspective, the integrated system was found to deliver cooling and power with average unit costs of 222.89 $/GJ and 17.06 $/GJ, respectively. These costs were found to be lower than the unit costs of the respective cooling and power costs delivered to the medical center if they were obtained from an electrically-driven vapor compression system and the electric grid, respectively. For the case study investigated, it has been found that using the integrated system is a desirable approach due to the system’s lower unit costs as well as its relatively short payback period. Additionally, it has been found that although cogeneration systems constructed based on the double-effect combined cooling and power cycle have higher exergy destruction and capital investment rates, they have a lower unit cost for the produced exergy in comparison with those of cogeneration systems constructed based on a single-effect combined cooling and power cycle.

References

1.
Novotny
,
V.
,
Szucs
,
D. J.
,
Špale
,
J.
,
Tsai
,
H. Y.
, and
Kolovratnik
,
M.
,
2021
, “
Absorption Power and Cooling Combined Cycle With an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration
,”
Energies
,
14
(
12
), p.
3715
.
2.
Shankar
,
R.
, and
Srinivas
,
T.
,
2016
, “
Options in Kalina Cycle Systems
,”
Energy Procedia
,
90
, pp.
260
266
.
3.
Pacheco-Reyes
,
A.
, and
Rivera
,
W.
,
2021
, “
Thermodynamic Cycles for the Simultaneous Production of Power and Cooling: A Comprehensive Review
,”
Int. J. Energy Res.
,
45
(
9
), pp.
12500
12535
.
4.
Ayou
,
D. S.
,
Bruno
,
J. C.
,
Saravanan
,
R.
, and
Coronas
,
A.
,
2013
, “
An Overview of Combined Absorption Power and Cooling Cycles
,”
Renewable Sustain. Energy Rev.
,
21
, pp.
728
748
.
5.
Deng
,
J.
,
Wang
,
R. Z.
, and
Han
,
G. Y.
,
2011
, “
A Review of Thermally Activated Cooling Technologies for Combined Cooling, Heating and Power Systems
,”
Progr. Energy Combust. Sci.
,
37
(
2
), pp.
172
203
.
6.
Goswami
,
D. Y.
,
1998
, “
Solar Thermal Power Technology: Present Status and Ideas for the Future
,”
Energy Sources
,
20
(
2
), pp.
137
145
.
7.
Martin
,
C.
, and
Goswami
,
D. Y.
,
2006
, “
Effectiveness of Cooling Production with a Combined Power and Cooling Thermodynamic Cycle
,”
Appl. Therm. Eng.
,
26
(
5–6
), pp.
576
582
.
8.
Sadrameli
,
S. M.
, and
Goswami
,
D. Y.
,
2007
, “
Optimum Operating Conditions for a Combined Power and Cooling Thermodynamic Cycle
,”
Appl. Energy
,
84
(
3
), pp.
254
265
.
9.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.
10.
Abed
,
H.
,
Atashkari
,
K.
,
Niazmehr
,
A.
, and
Jamali
,
A.
,
2013
, “
Thermodynamic Optimization of Combined Power and Refrigeration Cycle using Binary Organic Working Fluid
,”
Int. J. Refrig.
,
36
(
8
), pp.
2160
2168
.
11.
Shankar
,
R.
, and
Srinivas
,
T.
,
2014
, “
Development and Analysis of a New Integrated Power and Cooling Plant using LiBr-H2O Mixture
,”
Sadhana
,
39
, pp.
1547
1562
.
12.
Ventas
,
R.
,
Lecuona
,
A.
,
Vereda
,
C.
, and
Rodriguez-Hidalgo
,
M. C.
,
2017
, “
Performance Analysis of an Absorption Double-Effect Cycle for Power and Cold Generation using Ammonia/Lithium Nitrate
,”
Appl. Therm. Eng.
,
115
, pp.
256
266
.
13.
Novotny
,
V.
, and
Kolovratnik
,
M.
,
2017
, “
Absorption Power Cycles for Low-Temperature Heat Sources using Aqueous Salt Solutions as Working Fluids
,”
Int. J. Energy Res.
,
41
(
7
), pp.
952
975
.
14.
Xu
,
F.
,
Goswami
,
D. Y.
, and
Bhagwat
,
S. S.
,
2000
, “
A Combined Power/Cooling Cycle
,”
Energy
,
25
(
3
), pp.
233
246
.
15.
Shankar
,
R.
, and
Srinivas
,
T.
,
2014
, “
Parametric Optimization of Vapor Power and Cooling Cycle
,”
Energy Procedia
,
54
, pp.
135
141
.
16.
López-Villada
,
J.
,
Ayou
,
D. S.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2014
, “
Modelling, Simulation and Analysis of Solar Absorption Power-Cooling Systems
,”
Int. J. Refrig.
,
39
, pp.
125
136
.
17.
Rivera
,
W.
,
Sánchez-Sánchez
,
K.
,
Hernández-Magallanes
,
J. A.
,
Jiménez-García
,
J. C.
, and
Pacheco
,
A.
,
2020
, “
Modeling of Novel Thermodynamic Cycles to Produce Power and Cooling Simultaneously
,”
Processes
,
8
(
3
), p.
320
.
18.
Ziegler
,
F.
,
2007
, “
Novel Cycles for Power and Refrigeration
,”
1st European Conference on Polygeneration
,
Tarragona, Spain
,
Oct. 16–17
, pp.
169
181
.
19.
Patil
,
R. S.
, and
Bhagwat
,
S. S.
,
2021
, “
Thermodynamic Analysis and Optimisation of Double Effect Absorption Type Combined Power and Cooling Cycle Using LiBr-Water as Working Fluid
,”
Int. J. Exergy
,
34
(
2
), pp.
159
178
.
20.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2018
, “
A Comprehensive Exergoeconomic Analysis of Absorption Power and Cooling Cogeneration Cycles Based on Kalina, Part 1: Simulation
,”
Energy Convers. Manage
,
158
, pp.
437
459
.
21.
Alghamdi
,
A.
, and
Sherif
,
S. A.
,
2023
, “
Thermodynamic Analysis and Modeling of a Novel Solar Absorption Cogeneration System with an Adjustable Cooling-to-Power Ratio
,”
ASME J. Sol. Energy Eng.
,
145
(
4
), p.
041001
.
22.
Ayou
,
D. S.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2017
, “
Integration of a Mechanical and Thermal Compressor Booster in Combined Absorption Power and Refrigeration Cycles
,”
Energy
,
135
, pp.
327
341
.
23.
Sampaio
,
P. G. V.
, and
González
,
M. O. A.
,
2017
, “
Photovoltaic Solar Energy: Conceptual Framework
,”
Renewable Sustain. Energy Rev.
,
74
, pp.
590
601
.
24.
Khaliq
,
A.
,
Alharthi
,
M. A.
,
Alqaed
,
S.
,
Mokheimer
,
E. M. A.
, and
Kumar
,
R.
,
2020
, “
Analysis and Assessment of Tower Solar Collector Driven Trigeneration System
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051003
.
25.
Mekhilef
,
S.
,
Saidur
,
R.
, and
Safari
,
A.
,
2011
, “
A Review on Solar Energy Use in Industries
,”
Renewable Sustain. Energy Rev.
,
15
(
4
), pp.
1777
1790
.
26.
Shankar
,
R.
, and
Srinivas
,
T.
,
2014
, “
Investigation on Operating Processes for a New Solar Cooling Cogeneration Plant
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031016
.
27.
Hasan
,
A. A.
, and
Goswami
,
D. Y.
,
2003
, “
Exergy Analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
55
60
.
28.
Lu
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
Optimization of a Novel Combined Power/Refrigeration Thermodynamic Cycle
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
212
217
.
29.
Wang
,
F.
,
Li
,
H.
,
Zhao
,
J.
,
Deng
,
S.
, and
Yan
,
J.
,
2016
, “
Technical and Economic Analysis of Integrating Low-Medium Temperature Solar Energy into Power Plant
,”
Energy Convers. Manage.
,
112
, pp.
459
469
.
30.
Pierce
,
W.
,
Gauché
,
P.
,
von Backström
,
T.
,
Brent
,
A. C.
, and
Tadros
,
A.
,
2013
, “
A Comparison of Solar Aided Power Generation (SAPG) and Stand-Alone Concentrating Solar Power (CSP): A South African Case Study
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
657
662
.
31.
Abdelhady
,
S.
,
Borello
,
D.
, and
Tortora
,
E.
,
2014
, “
Design of a Small Scale Stand-Alone Solar Thermal Co-Generation Plant for an Isolated Region in Egypt
,”
Energy Convers. Manage.
,
88
, pp.
872
882
.
32.
Marín
,
J. S. Z.
,
Burin
,
E. K.
, and
Bazzo
,
E.
,
2020
, “
Analysis of a Solar-Aided Natural Gas Cogeneration Plant Applied to the Textile Sector
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011008
.
33.
Sánchez
,
F.
,
Sánchez
,
J.
, and
San Miguel
,
G.
,
2016
, “
Biomass Resources to Hybridize CSP With Biomethane: Potential of Horticultural Residues and Drought-Tolerant Crops
,”
Procedia Comput. Sci.
,
83
, pp.
1102
1109
.
34.
Burin
,
E. K.
,
Vogel
,
T.
,
Multhaupt
,
S.
,
Thelen
,
A.
,
Oeljeklaus
,
G.
,
Görner
,
K.
, and
Bazzo
,
E.
,
2016
, “
Thermodynamic and Economic Evaluation of a Solar Aided Sugarcane Bagasse Cogeneration Power Plant
,”
Energy
,
117
, Part 2, pp.
416
428
.
35.
Hameer
,
S.
, and
van Niekerk
,
J. L.
,
2015
, “
A Review of Large-Scale Electrical Energy Storage
,”
Int. J. Energy Res.
,
39
(
9
), pp.
1179
1195
.
36.
Li
,
S. F.
,
Liu
,
Z. H.
, and
Wang
,
X. J.
,
2019
, “
A Comprehensive Review on Positive Cold Energy Storage Technologies and Applications in Air Conditioning with Phase Change Materials
,”
Appl. Energy
,
255
, p.
113667
.
37.
Veerakumar
,
C.
, and
Sreekumar
,
A.
,
2016
, “
Phase Change Material Based Cold Thermal Energy Storage: Materials, Techniques and Applications-A Review
,”
Int. J. Refrig.
,
67
, pp.
271
289
.
38.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustain. Energy. Rev.
,
13
(
2
), pp.
318
345
.
39.
Comodi
,
G.
,
Carducci
,
F.
,
Sze
,
J. Y.
,
Balamurugan
,
N.
, and
Romagnoli
,
A.
,
2017
, “
Storing Energy for Cooling Demand Management in Tropical Climates: A Techno-Economic Comparison Between Different Energy Storage Technologies
,”
Energy
,
121
, pp.
676
694
.
40.
Potter Jr
,
R. A.
,
Weitzel
,
D. P.
,
King
,
D. J.
, and
Boettner
,
D. D.
,
1995
, “
ASHRAE RP-766: Study of Operational Experience With Thermal Storage Systems
,” Report No. CONF-950624,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
, https://www.osti.gov/biblio/211826
41.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2018
, “
A Comprehensive Exergoeconomic Analysis of Absorption Power and Cooling Cogeneration Cycles Based on Kalina, Part 2: Parametric Study and Optimization
,”
Energy Convers. Manage.
,
161
, pp.
74
103
.
42.
Rashidi
,
J.
, and
Yoo
,
C. K.
,
2017
, “
Exergetic and Exergoeconomic Studies of Two Highly Efficient Power-Cooling Cogeneration Systems Based on the Kalina and Absorption Refrigeration Cycles
,”
Appl. Therm. Eng.
,
124
, pp.
1023
1037
.
43.
Ayou
,
D. S.
, and
Eveloy
,
V.
,
2020
, “
Energy, Exergy and Exergoeconomic Analysis of an Ultra Low-Grade Heat-Driven Ammonia-Water Combined Absorption Power-Cooling Cycle for District Space Cooling, Sub-Zero Refrigeration, Power and LNG Regasification
,”
Energy Convers. Manage.
,
213
, p.
112790
.
44.
Ebadollahi
,
M.
,
Rostamzadeh
,
H.
,
Ghaebi
,
H.
, and
Amidpour
,
M.
,
2019
, “
Exergoeconomic Analysis and Optimization of Innovative Cascade Bi-Evaporator Electricity/Cooling Cycles with Two Adjustable Cooling Temperatures
,”
Appl. Therm. Eng.
,
152
, pp.
890
906
.
45.
Parikhani
,
T.
,
Ghaebi
,
H.
, and
Rostamzadeh
,
H.
,
2018
, “
A Novel Geothermal Combined Cooling and Power Cycle Based on the Absorption Power Cycle: Energy, Exergy and Exergoeconomic Analysis
,”
Energy
,
153
, pp.
265
277
.
46.
Lüpfert
,
E.
,
Zarza
,
E.
,
Geyer
,
M.
,
Nava
,
P.
,
Langenkamp
,
J.
,
Schiel
,
W.
,
Esteban
,
A.
,
Osuna
,
R.
, and
Mandelberg
,
E.
,
2003
, “
Euro Trough Collector Qualification Complete-Performance Test Results From PSA
,”
ISES Solar World Congress 2001 & 2003 Proceedings
,
Göteborg, Denmark
,
June 14–19
.
47.
Gomri
,
R.
,
2013
, “
Simulation Study on the Performance of Solar/Natural Gas Absorption Cooling Chillers
,”
Energy Convers. Manage.
,
65
, pp.
675
681
.
48.
Aube
,
F.
,
2001
, “
Guide for Computing CO2 Emissions Related to Energy Use
,”
CANMET Energy Diversification Laboratory, Department of Natural Resources Canada
, Report No. 33011558,
Varennes, Quebec, Canada
, https://inis.iaea.org/search/search.aspx?orig_q=RN:33011558
49.
Geyer
,
M.
,
Lüpfert
,
E.
,
Osuna
,
R.
,
Esteban
,
A.
,
Schiel
,
W.
,
Schweitzer
,
A.
,
Zarza
,
E.
,
Nava
,
P.
,
Langenkamp
,
J.
, and
Mandelberg
,
E.
,
2002
, “
EUROTROUGH-Parabolic Trough Collector Developed for Cost Efficient Solar Power Generation
,”
11th International Symposium on Concentrating Solar Power and Chemical Energy Technologies
,
Zurich, Switzerland
,
Sept. 4–6
.
50.
Sohn
,
C. W.
,
Fuchs
,
J.
, and
Gruber
,
M.
,
1998
, “
Chilled Water Storage Cooling System at Fort Jackson
,”
SC, Construction Engineering Research Laboratory (ARMY)
,
Champaign, IL
, Report No. AD-A-358929/XAB; CERL-TR-99/006, https://www.osti.gov/biblio/350615
51.
Bahnfleth
,
W. P.
, and
Musser
,
A.
,
1998
, “
Thermal Performance of a Full-Scale Stratified Chilled-Water Thermal Storage Tank
,”
ASHRAE Summer Annual Meeting, Toronto, Canada, ASHRAE Transactions, Vol. 104, Part 2
, pp.
377
388
. https://www.osti.gov/biblio/687607
52.
Dorgan
,
C. E.
, and
Elleson
,
J. S.
,
1994
, “
ASHRAE’s New Design Guide for Cool Thermal Storage
,”
ASHRAE J.
,
36
(
5
), pp.
29
34
.
53.
ASHRAE
,
2009
,
ASHRAE Handbook: Fundamentals, SI Edition
,
The American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
54.
Klein
,
S.
, and
Alvarad
,
F.
,
2002
, “
Engineering Equation Solver
,”
F-Chart Software
,
Madison, WI
.
55.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.
56.
Pátek
,
J.
, and
Klomfar
,
J.
,
2006
, “
A Computationally Effective Formulation of the Thermodynamic Properties of LiBr-H2O Solutions From 273 to 500 K Over Full Composition Range
,”
Int. J. Refrig.
,
29
(
4
), pp.
566
578
.
57.
Wang
,
J.
,
Lu
,
Z.
,
Li
,
M.
,
Lior
,
N.
, and
Li
,
W.
,
2019
, “
Energy, Exergy, Exergoeconomic and Environmental (4E) Analysis of a Distributed Generation Solar-Assisted CCHP (Combined Cooling, Heating and Power) Gas Turbine System
,”
Energy
,
175
, pp.
1246
1258
.
58.
Ünal
,
C.
,
Açıkkalp
,
E.
,
Balta
,
M. T.
, and
Hepbasli
,
A.
,
2021
, “
Dynamic Thermo-Ecological Cost Assessment and Performance Analyses of a Multi Generation System
,”
Int. J. Hydrogen. Energy
,
46
(
40
), pp.
21198
21211
.
59.
Yildiz
,
A.
, and
Güngör
,
A.
,
2009
, “
Energy and Exergy Analyses of Space Heating in Buildings
,”
Appl. Energy
,
86
(
10
), pp.
1939
1948
.
60.
Wildin
,
M. W.
, and
Truman
,
C. R.
,
1985
, “
A Summary of Experience With Stratified Chilled Water Tanks
,”
ASHRAE Trans.
,
91
(
1
), pp.
956
976
.
61.
Tran
,
N.
,
Kreider
,
J. F.
, and
Brothers
,
P.
,
1989
, “
Field Measurement of Chilled Water Storage Thermal Performance
,”
American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE Transactions, Vol. 95, Part II
, pp.
1106
1112
.
62.
Alghamdi
,
A.
, and
Sherif
,
S. A.
,
2023
, “
Guidance on Evaluating the Performance of Multigeneration Systems Based on Energetic and Exergetic Criteria
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
061009
.
63.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1995
,
Thermal Design and Optimization
,
John Wiley & Sons
,
New York
.
64.
Salhi
,
K.
,
Korichi
,
M.
, and
Ramadan
,
K. M.
,
2018
, “
Thermodynamic and Thermo-Economic Analysis of Compression-Absorption Cascade Refrigeration System Using Low-GWP HFO Refrigerant Powered by Geothermal Energy
,”
Int. J. Refrig.
,
94
, pp.
214
229
.
65.
Florides
,
G. A.
,
Kalogirou
,
S. A.
,
Tassou
,
S. A.
, and
Wrobel
,
L. C.
,
2003
, “
Design and Construction of a LiBr-Water Absorption Machine
,”
Energy. Convers. Manage.
,
44
(
15
), pp.
2483
2508
.
66.
Ozisik
,
M. N.
,
1985
,
Heat Transfer: A Basic Approach
, Vol.
780
,
McGraw-Hill, Inc.
,
New York
.
67.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
68.
Petukhov
,
B. S.
,
1970
, “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties,”
Advances in Heat Transfer
, Vol.
6
,
J. P.
Hartnett
, and
T. F.
Irvine
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
503
564
.
69.
Bakhtiari
,
B.
,
Fradette
,
L.
,
Legros
,
R.
, and
Paris
,
J.
,
2011
, “
A Model for Analysis and Design of H2O-LiBr Absorption Heat Pumps
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1439
1448
.
70.
Patnaik
,
V.
,
Perez-Blanco
,
H.
, and
Ryan
,
W. A.
,
1993
, “
A Simple Model for the Design of Vertical Tube Absorbers
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. CONF-930675-7, https://www.osti.gov/biblio/10184532
71.
Kurup
,
P.
, and
Turchi
,
C. S.
,
2015
, “
Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)
,”
National Renewable Energy Laboratory (NREL)
,
Golden, CO
, Report No. NREL/TP-6A20-65228, https://www.osti.gov/biblio/1227713
72.
Khoshgoftar Manesh
,
M. H.
,
Abdolmaleki
,
M.
,
Modabber
,
H. V.
, and
Rosen
,
M. A.
,
2021
, “
Dynamic Advanced Exergetic, Exergoeconomic, and Environmental Analyses of a Hybrid Solar City Gate Station
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102105
.
73.
Li
,
H.
,
Xu
,
M.
,
Yan
,
X.
,
Li
,
J.
,
Su
,
W.
,
Wang
,
J.
, and
Dai
,
Y.
,
2018
, “
Preliminary Conceptual Exploration About Performance Improvement on Supercritical CO2 Power System Via Integrating With Different Absorption Power Generation Systems
,”
Energy Convers. Manage.
,
173
, pp.
219
232
.
74.
Guo-Yan
,
Z.
,
En
,
W.
, and
Shan-Tung
,
T.
,
2008
, “
Techno-Economic Study on Compact Heat Exchangers
,”
Int. J. Energy Res.
,
32
(
12
), pp.
1119
1127
.
75.
Athari
,
H.
,
Kiasatmanesh
,
F.
,
Haghghi
,
M. A.
,
Teymourzadeh
,
F.
,
Yagoublou
,
H.
, and
Delpisheh
,
M.
,
2022
, “
Investigation of an Auxiliary Option to Meet Local Energy Demand Via an Innovative Small-Scale Geothermal-Driven System; A Seasonal Analysis
,”
J. Build. Eng.
,
50
, p.
103902
.
76.
Fabricius
,
M.
,
Tarp
,
D. Ø.
,
Rasmussen
,
T. W.
, and
Arabkoohsar
,
A.
,
2020
, “
Utilization of Excess Production of Waste-Fired CHP Plants for District Cooling Supply, an Effective Solution for a Serious Challenge
,”
Energies
,
13
(
13
), p.
3319
.
77.
Wall
,
G.
,
1991
, “
Optimization of Refrigeration Machinery
,”
Int. J. Refrig.
,
14
(
6
), pp.
336
340
.
78.
Peters
,
M. S.
,
Timmerhaus
,
K. D.
, and
West
,
R. E.
,
2003
,
Plant Design and Economics for Chemical Engineers
, 5th ed.,
McGraw-Hill Inc.
,
New York
.
79.
Al-Otaibi
,
D. A.
,
Dincer
,
I.
, and
Kalyon
,
M.
,
2004
, “
Thermoeconomic Optimization of Vapor-Compression Refrigeration Systems
,”
Int. Commun. Heat Mass Transfer
,
31
(
1
), pp.
95
107
.
80.
EIA
,
2022
, “
United States Natural Gas Industrial Prices
,”
U.S. Energy Information Administration
, https://www.eia.gov/dnav/ng/hist/n3035us3m.htm
81.
Vieira
,
L. S.
,
Donatelli
,
J. L.
, and
Cruz
,
M. E.
,
2009
, “
Exergoeconomic Improvement of a Complex Cogeneration System Integrated With a Professional Process Simulator
,”
Energy Convers. Manage.
,
50
(
8
), pp.
1955
1967
.
82.
Miran
,
A. Z.
,
Nemati
,
A.
, and
Yari
,
M.
,
2019
, “
Performance Analysis and Exergoeconomic Evaluation of a TRC System Enhanced by a Dedicated Mechanical Subcooling
,”
Energy Convers. Manage.
,
197
, p.
111890
.
83.
Weather Spark
,
2022
, “
Climate and Average Weather Year Round in Jeddah Saudi Arabia
,”
Minneapolis, MN
, Accessed 2014–2022, https://weatherspark.com/y/101171/Average-Weather-in-Jeddah-Saudi-Arabia-Year-Round.
84.
El-Sebaii
,
A. A.
,
Al-Ghamdi
,
A. A.
,
Al-Hazmi
,
F. S.
, and
Faidah
,
A. S.
,
2009
, “
Thermal Performance of a Single Basin Solar Still With PCM as a Storage Medium
,”
Appl. Energy
,
86
(
7-8
), pp.
1187
1195
.
85.
Aldubyan
,
M.
, and
Gasim
,
A.
,
2021
, “
Energy Price Reform in Saudi Arabia: Modeling the Economic and Environmental Impacts and Understanding the Demand Response
,”
Energy Pol.
,
148
, p.
111941
.
86.
Ibrahim
,
N. I.
,
Al-Sulaiman
,
F. A.
,
Rehman
,
S.
,
Saat
,
A.
, and
Ani
,
F. N.
,
2021
, “
Economic Analysis of a Novel Solar-Assisted Air Conditioning System With Integral Absorption Energy Storage
,”
J. Clean. Prod.
,
291
, p.
125918
.
You do not currently have access to this content.