Abstract

Utilizing highly concentrated solar power for thermochemical processing as one of the extraterrestrial in situ resource utilization (ISRU) applications has been highlighted as an essential technique to support deep-space exploration in the future. Multi-source high-flux solar simulators (HFSSs) are widely employed to provide stable irradiance for indoor solar thermal experiments. Meanwhile, numerical modeling that can characterize the radiation transport mechanisms within the solar thermal system has been developed for performance evaluation before field trials. However, significant differences between simulated and measured flux distributions were shown for existing models developed based on the Monte-Carlo ray-tracing (MCRT) method, which has been attributed to only one or two specific reasons. In this paper, we proposed a comprehensive analysis of the concentration characteristics of a 42 kW metal-halide lamp HFSS, developed at Swinburne University of Technology, considering the effect of five aspects. The flux distribution, uniformity, and vector distribution under different configurations were compared to quantify the influence of these factors on receiving irradiance. The suitable arc size, reflector shape, and reflector surface properties of the existing HFSS have also been numerically determined to improve the model and reduce the root mean square error (RMSE) for the lamp array from 38.2% to 8.3%. This research provides a potential pathway to numerically predict the radiation transfer performance of HFSSs and determine the suitable configuration for desired solar thermochemical applications.

References

1.
Garg
,
H. P.
,
Shukla
,
A. R.
,
Madhuri
,
I.
,
Agnihotri
,
R. C.
, and
Chakravertty
,
S.
,
1985
, “
Development of a Simple Low-Cost Solar Simulator for Indoor Collector Testing
,”
Appl. Energy
,
21
(
1
), pp.
43
54
.
2.
Kenny
,
S. P.
, and
Davidson
,
J. H.
,
1994
, “
Design of a Multiple-Lamp Large-Scale Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
116
(
4
), pp.
200
205
.
3.
Shaw
,
M.
,
Humbert
,
M.
,
Brooks
,
G.
,
Rhamdhani
,
A.
,
Duffy
,
A.
, and
Pownceby
,
M.
,
2022
, “
Mineral Processing and Metal Extraction on the Lunar Surface—Challenges and Opportunities
,”
Min. Process. Extr. Metall. Rev.
,
43
(
7
), pp.
865
891
.
4.
Nababan
,
D. C.
,
Shaw
,
M. G.
,
Humbert
,
M. S.
,
Mukhlis
,
R. Z.
, and
Rhamdhani
,
M. A.
,
2022
, “
Metals Extraction on Mars Through Carbothermic Reduction
,”
Acta Astronaut.
,
198
, pp.
564
576
.
5.
Zhang
,
Y.
,
Brooks
,
G.
,
Rhamdhani
,
M. A.
, and
Guo
,
C.
,
2021
, “
Review on Solar Thermochemical Processing for Lunar Applications and Their Heat Transfer Modeling Methods
,”
ASME J. Heat Transfer-Trans. ASME
143
(
12
), p.
120801
.
6.
Bader
,
R.
,
Levêque
,
G.
,
Haussener
,
S.
, and
Lipiński
,
W.
,
2016
, “
High-Flux Solar Simulator Technology
,”
Proceedings of the Optics for Solar Energy (SOLAR)
,
Kongresshalle am Zoo Leipzig
,
Leipzig, Germany
,
Nov. 14–17
.
7.
Unvala
,
B. A.
, and
Maries
,
A.
,
1974
, “
Radiant Heating Using an Ellipsoidal Reflector
,”
J. Phys. E: Sci. Instr.
,
7
(
5
), pp.
349
350
.
8.
Jaworske
,
D. A.
,
Jefferies
,
K. S.
, and
Mason
,
L. S.
,
1996
, “
Alignment and Initial Operation of an Advanced Solar Simulator
,”
J. Spacecr. Rocket.
,
33
(
6
), pp.
867
869
.
9.
Pottas
,
J.
,
Li
,
L.
,
Habib
,
M.
,
Wang
,
C. H.
,
Coventry
,
J.
, and
Lipiński
,
W.
,
2022
, “
Optical Alignment and Radiative Flux Characterization of a Multi-source High-Flux Solar Simulator
,”
Sol. Energy
,
236
, pp.
434
444
.
10.
Cheng
,
Z. D.
,
Men
,
J. J.
,
He
,
Y. L.
,
Tao
,
Y. B.
, and
Ma
,
Z.
,
2019
, “
Comprehensive Study on Novel Parabolic Trough Solar Receiver-Reactors of Gradually-Varied Porosity Catalyst Beds for Hydrogen Production
,”
Renew. Energy
,
143
, pp.
1766
1781
.
11.
Wang
,
F.
,
Tang
,
Z.
,
Gong
,
X.
,
Tan
,
J.
,
Han
,
H.
, and
Li
,
B.
,
2016
, “
Transfer Performance Enhancement and Thermal Strain Restrain of Tube Receiver for Parabolic Trough Solar Collector by Using Asymmetric Outward Convex Corrugated Tube
,”
Energy
,
114
, pp.
275
292
.
12.
Tawfik
,
M.
,
Tonnellier
,
X.
, and
Sansom
,
C.
,
2018
, “
Light Source Selection for a Solar Simulator for Thermal Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
90
, pp.
802
813
.
13.
Meng
,
Q.
,
Wang
,
Y.
, and
Zhang
,
L.
,
2011
, “
Irradiance Characteristics and Optimization Design of a Large-Scale Solar Simulator
,”
Sol. Energy
,
85
(
9
), pp.
1758
1767
.
14.
Olson
,
R. A.
, and
Parker
,
J. H.
,
1991
, “
Carbon Arc Solar Simulator
,”
Appl. Opt.
,
30
(
10
), pp.
1290
1293
.
15.
Boswell
,
A.
,
Hunter-Leiski
,
L.
,
Wetaski
,
C.
,
Manzoor
,
M. T.
, and
Tetreault-Friend
,
M.
,
2022
, “
Design of a Novel Compact Single-Source High-Flux Solar Simulator
,”
Proceedings of the SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems
,
Freiburg, Germany
,
Sept. 28–Oct. 2, 2020
, Vol. 2445(1).
16.
Wang
,
W.
, and
Laumert
,
B.
,
2014
, “
Simulate a ‘Sun’ for Solar Research: A Literature Review of Solar Simulator Technology
,” Technical Report. https://api.semanticscholar.org/CorpusID:106667773
17.
Tavakoli
,
M.
,
Jahantigh
,
F.
, and
Zarookian
,
H.
,
2021
, “
Adjustable High-Power-LED Solar Simulator With Extended Spectrum in UV Region
,”
Sol. Energy
,
220
, pp.
1130
1136
.
18.
Sun
,
C.
,
Jin
,
Z.
,
Song
,
Y.
,
Chen
,
Y.
,
Xiong
,
D.
,
Lan
,
K.
,
Huang
,
Y.
, and
Zhang
,
M.
,
2022
, “
LED-Based Solar Simulator for Terrestrial Solar Spectra and Orientations
,”
Sol. Energy
,
233
, pp.
96
110
.
19.
NREL
,
2003
, “
Reference Solar Spectral Irradiance: Air Mass 1.5
,”
National Renewable Energy Laboratory
, https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
20.
Hirsch
,
D.
,
Zedtwitz
,
P.
,
Osinga
,
T.
,
Kinamore
,
J.
, and
Steinfeld
,
A.
,
2003
, “
A New 75 kW High-Flux Solar Simulator for High-Temperature Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
117
120
.
21.
Ekman
,
B.
,
2016
, “
The Design, Construction and Performance of a Novel Solar Simulator and Hybrid Reactor
,”
Ph.D. thesis
,
Swinburne University of Technology
,
Melbourne, Australia
.
22.
VICTORIA GOV
,
2022
, “
Energy Efficient Best Practice Guide-Light
,” http://www.sustainability.vic.gov.au/∼/media/resources/documents/. Accessed May 2, 2022.
23.
Röger
,
M.
,
Herrmann
,
P.
,
Ulmer
,
S.
,
Ebert
,
M.
,
Prahl
,
C.
, and
Göhring
,
F.
,
2014
, “
Techniques to Measure Solar Flux Density Distribution on Large-Scale Receivers
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031013
.
24.
Rowe
,
S. C.
,
Groehn
,
A. J.
,
Palumbo
,
A. W.
,
Chubukov
,
B. A.
,
Clough
,
D. E.
,
Weimer
,
A. W.
, and
Hischier
,
I.
,
2015
, “
Worst-Case Losses From a Cylindrical Calorimeter for Solar Simulator Calibration
,”
Opt. Exp.
,
23
(
19
), pp.
A1309
A1323
.
25.
Rowe
,
S. C.
,
Wallace
,
M. A.
,
Lewandowski
,
A.
,
Fisher
,
R. P.
,
Ray Cravey
,
W.
,
Clough
,
D. E.
,
Hischier
,
I.
, and
Weimer
,
A. W.
,
2017
, “
Experimental Evidence of an Observer Effect in High-Flux Solar Simulators
,”
Sol. Energy
,
158
, pp.
889
897
.
26.
Ferriere
,
A.
, and
Rivoire
,
B.
,
2002
, “
An Instrument for Measuring Concentrated Solar-Radiation: A Photo-Sensor Interfaced With an Integrating Sphere
,”
Sol. Energy
,
72
(
3
), pp.
187
193
.
27.
Ballestrín
,
J.
,
Estrada
,
C. A.
,
Rodríguez-Alonso
,
M.
,
Pérez-Rábago
,
C.
,
Langley
,
L. W.
, and
Barnes
,
A.
,
2006
, “
Heat Flux Sensors: Calorimeters or Radiometers?
,”
Sol. Energy
,
80
(
10
), pp.
1314
1320
.
28.
Guillot
,
E.
,
Alxneit
,
I.
,
Ballestrin
,
J.
,
Sans
,
J. L.
, and
Willsh
,
C.
,
2014
, “
Comparison of 3 Heat Flux Gauges and a Water Calorimeter for Concentrated Solar Irradiance Measurement
,”
Energy Proc.
,
49
, pp.
2090
2099
.
29.
Garrido
,
J.
,
Aichmayer
,
L.
,
Wang
,
W.
, and
Laumert
,
B.
,
2017
, “
Characterization of the KTH High-Flux Solar Simulator Combining Three Measurement Methods
,”
Energy
,
141
, pp.
2091
2099
.
30.
Villasmil
,
W.
,
Cooper
,
T.
,
Koepf
,
E.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2017
, “
Coupled Concentrating Optics, Heat Transfer, and Thermochemical Modeling of a 100-KWth High-Temperature Solar Reactor for the Thermal Dissociation of ZnO
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021015
.
31.
Zhu
,
Q.
,
Xuan
,
Y.
,
Liu
,
X.
,
Yang
,
L.
,
Lian
,
W.
, and
Zhang
,
J.
,
2020
, “
A 130 kWe Solar Simulator With Tunable Ultra-High Flux and Characterization Using Direct Multiple Lamps Mapping
,”
Appl. Energy
,
270
, p.
115165
.
32.
Milanese
,
M.
,
Colangelo
,
G.
, and
de Risi
,
A.
,
2021
, “
Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications
,”
Energies
,
14
(
11
), p.
3124
.
33.
Abuseada
,
M.
,
Ophoff
,
C.
, and
Ozalp
,
N.
,
2019
, “
Characterization of a New 10kWe High Flux Solar Simulator Via Indirect Radiation Mapping Technique
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021005
.
34.
Kroger-Vodde
,
A.
, and
Hollander
,
A.
,
1999
, “
CCD Flux Measurement System PROHERMES
,”
J. Phys.: IV
,
4
(
9
), pp.
Pr3-649
Pr3-654
.
35.
Ulmer
,
S.
,
Reinalter
,
W.
,
Heller
,
P.
,
Lupfert
,
E.
, and
Martinez
,
D.
,
2002
, “
Beam Characterization and Improvement With a Flux Mapping System for Dish Concentrators
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
182
188
.
36.
Martínez-Manuel
,
L.
,
Pena-Cruz
,
M. I.
,
Piñeda-Arellano
,
C. A.
,
Gonzalo Carrillo-Baeza
,
J.
, and
May-Arrioja
,
D. A.
,
2019
, “
Optical Improvement for Modulating a High Flux Solar Simulator Designed for Solar Thermal and Thermochemical Research
,”
Appl. Opt.
,
58
(
10
), pp.
2605
2615
.
37.
Ekman
,
B.
,
Brooks
,
G.
, and
Rhamdhani
,
M. A.
,
2015
, “
Development of High Flux Solar Simulators for Solar Thermal Research
,”
Sol. Energy Mater. Sol. Cells
,
141
, pp.
436
446
.
38.
Petrasch
,
J.
,
2010
, “
A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,”
Proceedings of the ASME 2010 4th International Conference on Energy Sustainability, Vol. 2.
Phoenix, AZ
,
May 17–22
, pp.
125
132
.
39.
Schumacher
,
V.
,
2021
, “
Optical Simulation for Optimal Results
,”
Opsira
, https://www.opsira.de/en/services/optical-simulation/, Accessed May 2, 2022.
40.
Xiao
,
J.
,
Wei
,
X.
,
Gilaber
,
R. N.
,
Zhang
,
Y.
, and
Li
,
Z.
,
2018
, “
Design and Characterization of a High-Flux Non-Coaxial Concentrating Solar Simulator
,”
Appl. Therm. Eng.
,
145
, pp.
201
211
.
41.
Wang
,
J.
,
Qiu
,
Y.
,
Li
,
Q.
,
Xu
,
M.
, and
Wei
,
X.
,
2021
, “
Design and Experimental Study of a 30 kWe Adjustable Solar Simulator Delivering High and Uniform Flux
,”
Appl. Therm. Eng.
,
195
, p.
117215
.
42.
Li
,
J.
,
Hu
,
J.
, and
Lin
,
M.
,
2022
, “
A Flexibly Controllable High-Flux Solar Simulator for Concentrated Solar Energy Research From Extreme Magnitudes to Uniform Distributions
,”
Renewable Sustainable Energy Rev.
,
157
, p.
112084
.
43.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Häberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.
44.
Steinfeld
,
A.
,
1991
, “
Exchange Factor Between Two Spheres Placed at the Foci of a Specularly Reflecting Ellipsoidal Cavity
,”
Int. Commun. Heat Mass Transf.
,
18
(
1
), pp.
19
26
.
45.
Alxneit
,
I.
, and
Dibowski
,
G.
,
2011
, “
R12.5 Solar Simulator Evaluation Report
,”
SFERA Report, Paul Scherrer Institute (PSI) and German Aerospace Center (DLR)
.
46.
Jin
,
J.
,
Hao
,
Y.
, and
Jin
,
H.
,
2019
, “
A Universal Solar Simulator for Focused and Quasi-Collimated Beams
,”
Appl. Energy
,
235
, pp.
1266
1276
.
47.
Li
,
J.
, and
Lin
,
M.
,
2021
, “
Unified Design Guidelines for High Flux Solar Simulator With Controllable Flux Vector
,”
Appl. Energy
,
281
, p.
116083
.
48.
Krueger
,
K. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2011
, “
Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p.
011013
.
49.
Krueger
,
K.
,
Lipiński
,
W.
, and
Davidson
,
J.
,
2013
, “
Operational Performance of the University of Minnesota 45 KWe High-Flux Solar Simulator
,”
Proceedings of the ASME 2012 6th International Conference on Energy Sustainability & 10th Fuel Cell Science, Engineering and Technology Conference
,
San Diego, CA
,
July 23–26, 2012
, pp.
565
578
.
50.
Krueger
,
K.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2013
, “
Operational Performance of the University of Minnesota 45 kWe High-Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
044501
.
51.
Li
,
J.
,
Gonzalez-Aguilar
,
J.
, and
Romero
,
M.
,
2015
, “
Line-Concentrating Flux Analysis of 42 kWe High-Flux Solar Simulator
,”
Energy Proc.
,
69
, pp.
132
137
.
52.
Bader
,
R.
,
Haussener
,
S.
, and
Lipiński
,
W.
,
2015
, “
Optical Design of Multisource High-Flux Solar Simulators
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021012
.
53.
Leveque
,
G.
,
Bader
,
R.
,
Lipinski
,
W.
, and
Haussener
,
S.
,
2016
, “
Experimental and Numerical Characterization of a New 45 kWe Multisource High-Flux Solar Simulator
,”
Opt. Exp.
,
24
(
22
), pp.
A1360
1373
.
54.
Wieghardt
,
K.
,
Laaber
,
D.
,
Dohmen
,
V.
,
Hilger
,
P.
,
Korber
,
D.
,
Funken
,
K.
, and
Hoffschmidt
,
B.
,
2018
, “
Synlight-A New Facility for Large-Scale Testing in CSP and Solar Chemistry
,”
AIP Conf. Proc.
,
2033
(
1
), p.
040042
.
55.
Dai
,
S.
,
Chang
,
Z.
,
Ma
,
T.
,
Wang
,
L.
, and
Li
,
X.
,
2019
, “
Experimental Study on Flux Mapping for a Novel 84 kWe High Flux Solar Simulator
,”
Appl. Therm. Eng.
,
162
, p.
114319
.
56.
Xu
,
J.
,
Tang
,
C.
,
Cheng
,
Y.
,
Li
,
Z.
,
Cao
,
H.
,
Yu
,
X.
,
Li
,
Y.
, and
Wang
,
Y.
,
2016
, “
Design, Construction, and Characterization of an Adjustable 70 kW High-Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
041010
.
57.
Song
,
J.
,
Wang
,
J.
,
Niu
,
Y.
,
Wang
,
W.
,
Tong
,
K.
,
Yu
,
H.
, and
Yang
,
Y.
,
2019
, “
Flexible High Flux Solar Simulator Based on Optical Fiber Bundles
,”
Sol. Energy
,
193
, pp.
576
583
.
58.
Li
,
X.
,
Chen
,
J.
,
Lipiński
,
W.
,
Dai
,
Y.
, and
Wang
,
C.
,
2020
, “
A 28 kWe Multi-source High-Flux Solar Simulator: Design, Characterization, and Modeling
,”
Sol. Energy
,
211
, pp.
569
583
.
59.
Codd
,
D. S.
,
Carlson
,
A.
,
Rees
,
J.
, and
Slocum
,
A. H.
,
2010
, “
A Low Cost High Flux Solar Simulator
,”
Sol. Energy
,
84
(
12
), pp.
2202
2212
.
60.
Dong
,
X.
,
Nathan
,
G. J.
,
Sun
,
Z.
,
Gu
,
D.
, and
Ashman
,
P. J.
,
2015
, “
Concentric Multilayer Model of the Arc in High Intensity Discharge Lamps for Solar Simulators With Experimental Validation
,”
Sol. Energy
,
122
, pp.
293
306
.
61.
Boubault
,
A.
,
Yellowhair
,
J.
, and
Ho
,
C. K.
,
2017
, “
Design and Characterization of a 7.2 kW Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031012
.
62.
Roba
,
J. P.
, and
Siegel
,
N. P.
,
2017
, “
The Design of Metal Halide-Based High Flux Solar Simulators: Optical Model Development and Empirical Validation
,”
Sol. Energy
,
157
, pp.
818
826
.
63.
Alxneit
,
I.
,
2012
, “
Error Analysis of the Radiative Power Determined From Flux Distributions Measured With a Camera in a Xe Arc Lamp-Based Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
044501
.
64.
Krueger
,
K. R.
,
2012
, “
Design and Characterization of a Concentrating Solar Simulator
,”
Ph.D. thesis
,
The University of Minnesota
,
Minneapolis, MN
.
65.
Jeong
,
S. J.
, and
Kim
,
W. S.
,
2003
, “
A Study on the Optimal Monolith Combination for Improving Flow Uniformity and Warm-Up Performance of an Auto-Catalyst
,”
Chem. Eng.: Process: Process Intensif.
,
42
(
11
), pp.
879
895
.
66.
OSRAM
,
2022
, “
Entertainment and Industry, HMI Brand
,” https://www.osram.com/ecat/HMI%20brand-Discharge%20lamps-Entertainment-Specialty%20Lighting/com/en/GPS01_3107868/, Accessed May 2, 2022.
67.
Villasmil
,
W.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2014
, “
Dynamic Modeling of a Solar Reactor for Zinc Oxide Thermal Dissociation and Experimental Validation Using IR Thermography
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
010901
.
68.
Wang
,
Y.
,
Lipiński
,
W.
, and
Pye
,
J.
,
2020
, “
A Method for In-Situ Measurement of Directional and Spatial Radiosity Distributions From Complex-Shaped Solar Thermal Receivers
,”
Sol. Energy
,
201
, pp.
732
745
.
You do not currently have access to this content.