Abstract

This study offers a comprehensive assessment of the thermodynamic performance of a novel solar-based multigeneration system, which caters to the energy needs of a sustainable community by producing electricity, cooling, heating, and freshwater. The solar-based multigeneration system is comprised of four main components: the thermal subsystem of the parabolic trough collector (PTC) employing CO2 as a heat transfer fluid, a single-effect absorption refrigeration cycle (ARC), a supercritical CO2 (S-CO2) cycle, and an adsorption desalination (AD) cycle with heat recovery employing aluminum fumarate metal–organic framework (MOF) adsorbent material. A comprehensive parametric study was performed on the proposed solar-based multigeneration system by varying key parameters to evaluate its performance. It is found that the thermal and exergy efficiencies of a PTC were evaluated to be 68.35% and 29.88%, respectively, at a fixed inlet temperature of 225 °C and solar irradiation of 850 W/m2 and also a slight reduction in the ARC cycle when examining the variation in the thermal and exergetic COPs for the generator temperature. Additionally, the thermal and exergy efficiencies of electricity, cooling, and heating were determined to be 20.41% and 21.93%, 41.34% and 3.51%, and 7.14% and 3.07%, respectively, at the operating condition. The maximum specific daily water production (SDWP) value of 12.91 m3/ton/day and a gain output ratio (GOR) of 0.64 were obtained under steady operating conditions in the AD cycle.

References

1.
Jones
,
M. W.
,
Peters
,
G. P.
,
Gasser
,
T.
,
Andrew
,
R. M.
,
Schwingshackl
,
C.
,
Gütschow
,
J.
,
Houghton
,
R. A.
,
Friedlingstein
,
P.
,
Pongratz
,
J.
, and
Le Quéré
,
C.
,
2023
, “
National Contributions to Climate Change Due to Historical Emissions of Carbon Dioxide, Methane, and Nitrous Oxide Since 1850
,”
Sci. Data
,
10
(
1
), p.
155
.
2.
Ritchie
,
H.
,
Roser
,
M.
, and
Rosado
,
P.
,
2020
, “CO2 and Greenhouse Gas Emissions,” OurWorldInData.org, https://ourworldindata.org/co2-and-greenhouse-gas-emissions.
3.
Alghamdi
,
A.
, and
Sherif
,
S. A.
,
2023
, “
Guidance on Evaluating the Performance of Multigeneration Systems Based on Energetic and Exergetic Criteria
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
061009
.
4.
Bamisile
,
O.
,
Huang
,
Q.
,
Dagbasi
,
M.
,
Abid
,
M.
,
Okafor
,
E. C.
, and
Ratlamwala
,
T. A. H.
,
2020
, “
Concentrated Solar Powered Novel Multi-Generation System: A Energy, Exergy, and Environmental Analysis
,”
ASME. J. Sol. Energy Eng.
,
142
(
5
), p.
051005
.
5.
Elsheikh
,
A. H.
,
Sharshir
,
S. W.
,
Elaziz
,
M. A.
,
Kabeel
,
A. E.
,
Guilan
,
W.
, and
Haiou
,
Z.
,
2019
, “
Modeling of Solar Energy Systems Using Artificial Neural Network: A Comprehensive Review
,”
Sol. Energy
,
180
, pp.
622
639
.
6.
Canneto
,
G.
,
Tizzoni
,
A. C.
,
Sau
,
S.
,
Mansi
,
E.
,
Gaggioli
,
W.
,
Spadoni
,
A.
,
Corsaro
,
N.
, et al
,
2023
, “
Thermocline Thermal Storage for Concentrated Solar Power Applications: Characterization of Novel Nitrate Salt Mixtures
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031001
.
7.
Kalogirou
,
S. A.
,
Karellas
,
S.
,
Braimakis
,
K.
,
Stanciu
,
C.
, and
Badescu
,
V.
,
2016
, “
Exergy Analysis of Solar Thermal Collectors and Processes
,”
Prog. Energy Combust. Sci.
,
56
, pp.
106
137
.
8.
Binotti
,
M.
,
Zhu
,
G.
,
Gray
,
A.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2013
, “
Geometric Analysis of Three-Dimensional Effects of Parabolic Trough Collectors
,”
Sol. Energy
,
88
, pp.
88
96
.
9.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Daniil
,
I.
,
2016
, “
The Use of Gas Working Fluids in Parabolic Trough Collectors—An Energetic and Exergetic Analysis
,”
Appl. Therm Eng.
,
109
(
Part A
), pp.
1
14
.
10.
Muñoz-Anton
,
J.
,
Biencinto
,
M.
,
Zarza
,
E.
, and
Díez
,
L. E.
,
2014
, “
Theoretical Basis and Experimental Facility for Parabolic Trough Collectors at High Temperature Using Gas as Heat Transfer Fluid
,”
Appl. Energy
,
135
, pp.
373
381
.
11.
Islam
,
M. K.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2015
, “
Modelling and Analysis of the Effect of Different Parameters on a Parabolic-Trough Concentrating Solar System
,”
RSC Adv.
,
5
(
46
), pp.
36540
36546
.
12.
Aybar
,
H. S.
,
2004
, “
Desalination System Using Waste Heat of Power Plant
,”
Desalination
,
166
, pp.
167
170
.
13.
Lienhard
,
J. H.
,
Antar
,
M. A.
,
Bilton
,
A.
,
Blanco
,
J.
, and
Zaragoza
,
G.
,
2012
, “Solar Desalination,”
Annual Review of Heat Transfer
,
Begell House Inc.
,
New York
, pp.
277
347
.
14.
Al-Sulaiman
,
F.
, and
Atif
,
M.
,
2015
, “
Performance Comparison of Different Supercritical Carbon Dioxide Brayton Cycles Integrated with a Solar Power Tower
,”
Energy
,
82
, pp.
61
71
.
15.
Moisseytsev
,
A.
, and
Sienicki
,
J.
,
2008
, “
Performance Improvement Options for the Supercritical Carbon Dioxide Brayton Cycle
,”
Argonne National Laboratory, Report No. ANL-GENIV103.
16.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “Concentrating Solar Power Gen 3 Demonstration Roadmap,” National Renewable Energy Laboratory, Report No. NREL/TP-5500-67464
17.
Siddiqui
,
M. A.
,
Khaliq
,
A.
, and
Kumar
,
R.
,
2021
, “
Thermodynamic Analysis of Exhaust Waste Heat Recovery From Turbocharged HCCI Engine Fueled by Wet-Ethanol Using an Absorption Refrigeration Cycle (ARC)
,”
Mater. Today: Proc.
,
47
(
17
), pp.
6257
6261
.
18.
Yang
,
S.
,
Deng
,
C.
, and
Liu
,
Z.
,
2019
, “
Optimal Design and Analysis of a Cascade LiBr/H2O Absorption Refrigeration/Transcritical CO2 Process for Low-Grade Waste Heat Recovery
,”
Energy Convers. Manag.
,
192
, pp.
232
242
.
19.
Ettouney
,
H.
, and
Wilf
,
M.
,
2009
, “Commercial Desalination Technologies,”
Seawater Desalination. Green Energy and Technology
,
G.
Micale
,
L.
Rizzuti
, and
A.
Cipollina
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
77
107
.
20.
Elsayed
,
M. L.
,
Mesalhy
,
O.
,
Mohammed
,
R. H.
, and
Chow
,
L. C.
,
2018
, “
Transient Performance of MED Processes with Different Feed Configurations
,”
Desalination
,
438
, pp.
37
53
.
21.
Shaaban
,
S.
,
2019
, “
Performance Optimization of an Integrated Solar Combined Cycle Power Plant Equipped With a Brine Circulation MSF Desalination Unit
,”
Energy Convers. Manage.
,
198
, p.
111794
.
22.
Elsayed
,
E.
,
Al-Dadah
,
R.
,
Mahmoud
,
S.
,
Anderson
,
P. A.
,
Elsayed
,
A.
, and
Youssef
,
P. G.
,
2017
, “
CPO-27 (Ni), Aluminium Fumarate and MIL-101 (Cr) MOF Materials for Adsorption Water Desalination
,”
Desalination
,
406
, pp.
25
36
.
23.
Mezher
,
T.
,
Fath
,
H.
,
Abbas
,
Z.
, and
Khaled
,
A.
,
2011
, “
Techno-Economic Assessment and Environmental Impacts of Desalination Technologies
,”
Desalination
,
266
(
1–3
), pp.
263
273
.
24.
Almatrafi
,
E.
, and
Siddiqui
,
M. A.
,
2023
, “
Novel Proposal and Assessment of a Solar-Powered Supercritical CO2 Cycle Integrated With Adsorption Desalination System for Electricity, Heating and Desalination
,”
Case Stud. Therm. Eng.
,
49
, p.
103343
.
25.
Alsaman
,
A. S.
,
Askalany
,
A. A.
,
Harby
,
K.
, and
Ahmed
,
M. S.
,
2017
, “
Performance Evaluation of a Solar-Driven Adsorption Desalination-Cooling System
,”
Energy
,
128
, pp.
196
207
.
26.
Thu
,
K.
,
Kim
,
Y.-D.
,
Amy
,
G.
,
Chun
,
W.
, and
Ng
,
K.
,
2013
, “
A Hybrid Multi-Effect Distillation and Adsorption Cycle
,”
Appl. Energy
,
104
, pp.
810
821
.
27.
Ng
,
K. C.
,
Thu
,
K.
,
Kim
,
Y.
,
Chakraborty
,
A.
, and
Amy
,
G.
,
2013
, “
Adsorption Desalination: An Emerging Low-Cost Thermal Desalination Method
,”
Desalination
,
308
, pp.
161
179
.
28.
Mitra
,
S.
,
Srinivasan
,
K.
,
Kumar
,
P.
,
Murthy
,
S. S.
, and
Dutta
,
P.
,
2014
, “
Solar Driven Adsorption Desalination System
,”
Energy Procedia
,
49
, pp.
2261
2269
.
29.
Ng
,
K. C.
,
Thu
,
K.
,
Saha
,
B. B.
, and
Chakraborty
,
A.
,
2012
, “
Study on a Waste Heat-Driven Adsorption Cooling Cum Desalination Cycle
,”
Int. J. Refrig.
,
35
(
3
), pp.
685
693
.
30.
Elsayed
,
E.
,
Al-Dadah
,
R.
,
Mahmoud
,
S.
,
Anderson
,
P. A.
, and
Elsayed
,
A.
,
2020
, “
Experimental Testing of Aluminium Fumarate MOF for Adsorption Desalination
,”
Desalination
,
475
, p.
114170
.
31.
Kim
,
Y.-D.
,
Thu
,
K.
,
Masry
,
M.
, and
Ng
,
K.
,
2014
, “
Water Quality Assessment of Solar-Assisted Adsorption Desalination Cycle
,”
Desalination
,
344
, pp.
144
151
.
32.
Stuber
,
M. D.
,
Sullivan
,
C.
,
Kirk
,
S. A.
,
Farrand
,
J. A.
,
Schillaci
,
P. V.
,
Fojtasek
,
B. D.
, and
Mandell
,
A. H.
,
2015
, “
Pilot Demonstration of Concentrated Solar-Powered Desalination of Subsurface Agricultural Drainage Water and Other Brackish Groundwater Sources
,”
Desalination
,
355
, pp.
186
196
.
33.
Sharaf
,
M.
,
Nafey
,
A.
, and
García-Rodríguez
,
L.
,
2011
, “
Thermo-Economic Analysis of Solar Thermal Power Cycles Assisted MED-VC (Multi Effect Distillation-Vapor Compression) Desalination Processes
,”
Energy
,
36
(
5
), pp.
2753
2764
.
34.
Sharaf
,
M. A.
,
2012
, “
Thermo-Economic Comparisons of Different Types of Solar Desalination Processes
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031001
.
35.
Casimiroa
,
S.
,
Ahmedb
,
M.
,
Cardosoa
,
J.
, and
Mendes
,
J.
,
2017
, “
Reverse Osmosis Powered by Concentrating Solar Power (CSP): A Case Study for Trapani, Sicily
,”
Desalin. Water Treat.
,
61
, pp.
183
195
.
36.
Palenzuela
,
P.
,
Zaragoza
,
G.
,
Alarcon
,
D.
, and
Blanco
,
J.
,
2011
, “
Simulation and Evaluation of the Coupling of Desalination Units to Parabolic-Trough Solar Power Plants in the Mediterranean Region
,”
Desalination
,
281
, pp.
379
387
.
37.
Olwig
,
R.
,
Hirsch
,
T.
,
Sattler
,
C.
,
Glade
,
H.
,
Schmeken
,
L.
,
Will
,
S.
,
Ghermandi
,
A.
, and
Messalem
,
R.
,
2012
, “
Techno-Economic Analysis of Combined Concentrating Solar Power and Desalination Plant Configurations in Israel and Jordan
,”
Desalin. Water Treat.
,
41
(
1–3
), pp.
9
25
.
38.
Demir
,
M.
, and
Dincer
,
I.
,
2017
, “
Development of an Integrated Hybrid Solar Thermal Power System With Thermoelectric Generator for Desalination and Power Production
,”
Desalination
,
404
, pp.
59
71
.
39.
Soltani
,
R.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
, “
Thermodynamic Analysis of a Novel Multigeneration Energy System Based on Heat Recovery From a Biomass CHP Cycle
,”
Appl. Therm. Eng.
,
89
, pp.
90
100
.
40.
Chang
,
H.
,
Wan
,
Z.
,
Zheng
,
Y.
,
Chen
,
X.
,
Shu
,
S.
,
Tu
,
Z.
, and
Chan
,
S. H.
,
2017
, “
Energy Analysis of a Hybrid PEMFC–Solar Energy Residential Micro-CCHP System Combined With an Organic Rankine Cycle and Vapor Compression Cycle
,”
Energy Convers. Manage.
,
142
, pp.
374
384
.
41.
Keshavarzzadeh
,
A. H.
,
Ahmadi
,
P.
, and
Safaei
,
M. R.
,
2019
, “
Assessment and Optimization of an Integrated Energy System With Electrolysis and Fuel Cells for Electricity, Cooling and Hydrogen Production Using Various Optimization Techniques
,”
Int. J. Hydrogen Energy
,
44
(
39
), pp.
21379
21396
.
42.
Ozturk
,
M.
, and
Dincer
,
I.
,
2013
, “
Thermodynamic Analysis of a Solar-Based Multi-Generation System With Hydrogen Production
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1235
1244
.
43.
Yilmaz
,
F.
,
2018
, “
Thermodynamic Performance Evaluation of a Novel Solar Energy Based Multigeneration System
,”
Appl. Therm. Eng.
,
143
, pp.
429
437
.
44.
Siddiqui
,
M. A.
,
Khaliq
,
A.
, and
Kumar
,
R.
,
2022
, “
Thermodynamic and Comparative Analysis of Ejector Refrigeration Cycle and Absorption Refrigeration Cycle Integrated Wet Ethanol-Fueled HCCI Engine for Cogeneration of Power and Cooling
,”
ASME J. Thermal Sci. Eng. Appl.
,
14
(
4
), p.
041003
.
45.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Thermal, Hydraulic and Exergetic Evaluation of a Parabolic Trough Collector Operating With Thermal Oil and Molten Salt Based Nanofluids
,”
Energy Convers. Manage.
,
156
, pp.
388
402
.
46.
Kaushik
,
S. C.
, and
Arora
,
A.
,
2009
, “
Energy and Exergy Analysis of Single Effect and Series Flow Double Effect Water-Lithium Bromide Absorption Refrigeration Systems
,”
Int. J. Refrig.
,
32
(
6
), pp.
1247
1258
.
47.
Petela
,
R.
,
2013
, “Exergy Analysis of Solar Radiation Processes,”
Solar Energy Sciences and Engineering Applications
,
N.
Enteria
, and
A.
Akbarzadeh
, eds.,
CRC Press, Taylor & Francis Group
,
London
, pp.
7
96
.
48.
Ghazy
,
M.
,
Askalany
,
A. A.
,
Ibrahim
,
E. M. M.
,
Mohamed
,
A. S. A.
,
Ali
,
E. S.
, and
Al-Dadah
,
R.
,
2022
, “
Solar Powered Adsorption Desalination System Employing CPO-27(Ni)
,”
J. Energy Storage
,
53
, p.
105174
.
49.
Ng
,
K. C.
,
Thu
,
K.
,
Chakraborty
,
A.
,
Saha
,
B. B.
, and
Chun
,
W. G.
,
2009
, “
Solar-Assisted Dual-Effect Adsorption Cycle for the Production of Cooling Effect and Potable Water
,”
Int. J. Low-Carbon Technol.
,
4
(
2
), pp.
61
67
.
50.
Askalany
,
A.
,
Alsaman
,
A. S.
,
Ghazy
,
M.
,
Mohammed
,
R. H.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2021
, “
Experimental Optimization of the Cycle Time and Switching Time of a Metal Organic Framework Adsorption Desalination Cycle
,”
Energy Convers. Manage.
,
245
, p.
114558
.
51.
Manente
,
G.
, and
Lazzaretto
,
A.
,
2014
, “
Innovative Biomass to Power Conversion Systems Based on Cascaded Supercritical CO2 Brayton Cycles
,”
Biomass Bioenergy
,
69
, pp.
155
168
.
52.
Youssef
,
P.
,
Mahmoud
,
S.
,
Al-Dadah
,
R.
,
Elsayed
,
E.
, and
El-Samni
,
O.
,
2017
, “
Numerical Investigation of Aluminum Fumarate MOF Adsorbent Material for Adsorption Desalination/Cooling Application
,”
Energy Procedia
,
142
, pp.
1693
1698
.
53.
Thu
,
K.
,
Ng
,
K. C.
,
Saha
,
B. B.
,
Chakraborty
,
A.
, and
Koyama
,
S.
,
2009
, “
Operational Strategy of Adsorption Desalination Systems
,”
Int. J. Heat Mass. Transfer.
,
52
(
7–8
), pp.
1811
1816
.
54.
Youssef
,
P.
,
Al-Dadah
,
R.
,
Mahmoud
,
S. M.
,
Dakkama
,
H. J.
, and
Elsayed
,
A.
,
2015
, “
Effect of Evaporator and Condenser Temperatures on the Performance of Adsorption Desalination Cooling Cycle
,”
Energy Procedia
,
75
, pp.
1464
1469
.
You do not currently have access to this content.