Abstract

Using bolts through the back of a solar photovoltaic (PV) module frames to attach them to racking is time consuming and awkward, so commercial PV installations use clamping technologies on the front. Conventional and proprietary clamps are costly and demand access to supply chains for uncommon mechanical components that limit deployment velocity. To overcome these challenges, this study presents new open-source downward-fastened and side-fastened aluminum (Al) framing designs, which are easy to install and compatible with metal and wood racks. The proposed parametric open-source designs are analyzed through finite element method (FEM) simulations and economic analysis is performed to compare to conventional PV frame at both the module and system levels. The FEM results showed all the frames have acceptable mechanical reliability and stability to pass IEC 61215 standards. The results show the new frame (with a bottom width of 29 mm and thickness of 1.5 mm) has about a 2% land use efficiency penalty, but has better mechanical stability (lower stress and deflections), is easier to install, and has reduced material economic costs compared to conventional frames. The results are promising for the use of the new PV frame designs for distributed manufacturing targeted at specific applications.

References

1.
Pearce
,
J.
,
2002
, “
Photovoltaics—A Path to Sustainable Futures
,”
Futures
,
34
(
7
), pp.
663
674
.
2.
Fthenakis
,
V. M.
, and
Moskowitz
,
P. D.
,
2000
, “
Photovoltaics: Environmental, Health and Safety Issues and Perspectives
,”
Prog. Photovolt.: Res. Appl.
,
8
(
1
), pp.
27
38
.
3.
Pearce
,
J.
, and
Lau
,
A.
,
2009
, “
Net Energy Analysis for Sustainable Energy Production From Silicon Based Solar Cells
,”
Proceedings of the ASME Solar 2002: International Solar Energy Conference. Solar Energy
,
Reno, NV
,
June 15–20, 2002
, pp.
181
186
.
4.
Fthenakis
,
V.
, and
Alsema
,
E.
,
2006
, “
Photovoltaics Energy Payback Times, Greenhouse Gas Emissions and External Costs: 2004–Early 2005 Status
,”
Prog. Photovolt.: Res. Appl.
,
14
(
3
), pp.
275
280
.
5.
Yaqoot
,
M.
,
Diwan
,
P.
, and
Kandpal
,
T.
,
2016
, “
Review of Barriers to the Dissemination of Decentralized Renewable Energy Systems
,”
Renew. Sust. Energy Rev.
,
58
, pp.
477
490
.
6.
Strupeit
,
L.
, and
Palm
,
A.
,
2016
, “
Overcoming Barriers to Renewable Energy Diffusion: Business Models for Customer-Sited Solar Photovoltaics in Japan, Germany and the United States
,”
J. Clean. Prod.
,
123
, pp.
124
136
.
7.
Morris
,
J.
,
Calhoun
,
K.
,
Goodman
,
J.
, and
Seif
,
D.
,
2014
, “
Reducing Solar PV Soft Costs: A Focus on Installation Labor
,”
2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)
,
Denver, CO
,
June 8–13
, pp.
3356
3361
.
8.
Yilmaz
,
S.
,
Ozcalik
,
H. R.
,
Kesler
,
S.
,
Dincer
,
F.
, and
Yelmen
,
B.
,
2015
, “
The Analysis of Different PV Power Systems for the Determination of Optimal PV Panels and System Installation—A Case Study in Kahramanmaras, Turkey
,”
Renew. Sust. Energy Rev.
,
52
, pp.
1015
1024
.
9.
Barbose
,
G. L.
,
Darghouth
,
N. R.
,
LaCommare
,
K. H.
,
Millstein
,
D.
, and
Rand
,
J.
,
2018
,
Tracking the Sun: Installed Price Trends for Distributed Photovoltaic Systems in the United States-2018 Edition
,
Lawrence Berkeley National Laboratory (LBNL)
,
Berkeley, CA
.
10.
Fu
,
R.
,
Feldman
,
D. J.
, and
Margolis
,
R. M.
,
2018
,
US Solar Photovoltaic System Cost Benchmark: Q1 2018
, No. NREL/TP-6A20-72399,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
11.
Barron
,
A. R.
,
2015
, “
Cost Reduction in the Solar Industry
,”
Mater. Today
,
18
(
1
), pp.
2
3
.
12.
Feldman
,
D.
,
Barbose
,
G.
,
Margolis
,
R.
,
Bolinger
,
M.
,
Chung
,
D.
,
Fu
,
R.
,
Seel
,
J.
,
Davidson
,
C.
,
Darghouth
,
N.
, and
Wiser
,
R.
,
2015
,
Photovoltaic System Pricing Trends. Historical, Recent, and Near-Term Projections
, No. NREL/PR-6A20-64898,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
13.
Grafman
,
L.
, and
Pearce
,
J.
,
2021
,
To Catch the Sun
,
Humboldt State University Press
,
Arcata, CA
.
14.
Polysilicon Solar Price—PVInsights, .
15.
Tamarack Solar Top of Pole Mounts for Large Solar Panels | altE, .
16.
TPM3 Pole Mount for Three 60/72 Cell Solar Modules, Grid Energy Solutions, .
17.
Wittbrodt
,
B. T.
, and
Pearce
,
J. M.
,
2015
, “
Total US Cost Evaluation of Low-Weight Tension-Based Photovoltaic Flat-Roof Mounted Racking
,”
Sol. Energy
,
117
, pp.
89
98
.
18.
Wittbrodt
,
B.
, and
Pearce
,
J. M.
,
2017
, “
3-D Printing Solar Photovoltaic Racking in Developing World
,”
Energy Sust. Dev.
,
36
, pp.
1
5
.
19.
Arefeen
,
S.
, and
Dallas
,
T.
,
2021
, “
Low-Cost Racking for Solar Photovoltaic Systems With Renewable Tensegrity Structures
,”
Sol. Energy
,
224
, pp.
798
807
.
20.
Franz
,
J.
,
Morse
,
S.
, and
Pearce
,
J. M.
,
2022
, “
Low-Cost Pole and Wire Photovoltaic Racking
,”
Energy Sust. Dev.
,
68
, pp.
501
511
.
21.
Wittbrodt
,
B.
,
Laureto
,
J.
,
Tymrak
,
B.
, and
Pearce
,
J. M.
,
2015
, “
Distributed Manufacturing With 3-D Printing: A Case Study of Recreational Vehicle Solar Photovoltaic Mounting Systems
,”
J. Frugal Innov.
,
1
(
1
), pp.
1
7
.
22.
Pearce
,
J. M.
,
Meldrum
,
J.
, and
Osborne
,
N.
,
2017
, “
Design of Post-Consumer Modification of Standard Solar Modules to Form Large-Area Building-Integrated Photovoltaic Roof Slates
,”
Designs
,
1
(
2
), p.
9
.
23.
Vandewetering
,
N.
,
Hayibo
,
K. S.
, and
Pearce
,
J. M.
,
2022
, “
Impacts of Location on Designs and Economics of DIY Low-Cost Fixed-Tilt Open Source Wood Solar Photovoltaic Racking
,”
Designs
,
6
(
3
), p.
41
.
24.
Vandewetering
,
N.
,
Hayibo
,
K. S.
, and
Pearce
,
J. M.
, “
Open-Source Design and Economics of Manual Variable-Tilt Angle DIY Wood-Based Solar Photovoltaic Racking System
,”
Designs
,
6
(
3
), p.
54
.
25.
Jarre
,
M.
,
Petit-Boix
,
A.
,
Priefer
,
C.
,
Meyer
,
R.
, and
Leipold
,
S.
,
2020
, “
Transforming the Bio-Based Sector Towards a Circular Economy-What Can We Learn From Wood Cascading?
,”
Forest Pol. Econ.
,
110
, p.
101872
.
26.
Husgafvel
,
R.
,
Linkosalmi
,
L.
,
Hughes
,
M.
,
Kanerva
,
J.
, and
Dahl
,
O.
,
2018
, “
Forest Sector Circular Economy Development in Finland: A Regional Study on Sustainability Driven Competitive Advantage and an Assessment of the Potential for Cascading Recovered Solid Wood
,”
J. Clean. Prod.
,
181
, pp.
483
497
.
27.
Mesquita
,
D. D. B.
,
Silva
,
J. L. D. S.
,
Moreira
,
H. S.
,
Kitayama
,
M.
, and
Villalva
,
M. G.
,
2019
, “
A Review and Analysis of Technologies Applied in PV Modules
,”
2019 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America)
,
Gramado, Brazil
,
Sept. 15–18
, pp.
1
6
.
28.
Powell
,
D. M.
,
Winkler
,
M. T.
,
Choi
,
H. J.
,
Simmons
,
C. B.
,
Needleman
,
D. B.
, and
Buonassisi
,
T.
,
2012
, “
Crystalline Silicon Photovoltaics: A Cost Analysis Framework for Determining Technology Pathways to Reach Baseload Electricity Costs
,”
Energy Environ. Sci.
,
5
(
3
), pp.
5874
5883
.
29.
Akinsipe
,
O. C.
,
Moya
,
D.
, and
Kaparaju
,
P.
,
2021
, “
Design and Economic Analysis of off-Grid Solar PV System in Jos-Nigeria
,”
J. Clean. Prod.
,
287
, p.
125055
.
30.
Qoaider
,
L.
, and
Steinbrecht
,
D.
,
2010
, “
Photovoltaic Systems: A Cost Competitive Option to Supply Energy to Off-Grid Agricultural Communities in Arid Regions
,”
Appl. Energy
,
87
(
2
), pp.
427
435
.
31.
Jones
,
M. A.
,
Odeh
,
I.
,
Haddad
,
M.
,
Mohammad
,
A. H.
, and
Quinn
,
J. C.
,
2016
, “
Economic Analysis of Photovoltaic (PV) Powered Water Pumping and Desalination Without Energy Storage for Agriculture
,”
Desalination
,
387
, pp.
35
45
.
32.
Rai
,
V.
,
Reeves
,
D. C.
, and
Margolis
,
R.
,
2016
, “
Overcoming Barriers and Uncertainties in the Adoption of Residential Solar PV
,”
Renew. Energy
,
89
, pp.
498
505
.
33.
Reindl
,
K.
, and
Palm
,
J.
,
2021
, “
Installing PV: Barriers and Enablers Experienced by Non-Residential Property Owners
,”
Renew. Sust. Energy Rev.
,
141
, p.
110829
.
34.
Palm
,
J.
,
2018
, “
Household Installation of Solar Panels–Motives and Barriers in a 10-Year Perspective
,”
Energy Pol.
,
113
, pp.
1
8
.
35.
Popovich
,
V. A.
,
Yunus
,
A.
,
Janssen
,
M.
,
Richardson
,
I. M.
, and
Bennett
,
I. J.
,
2011
, “
Effect of Silicon Solar Cell Processing Parameters and Crystallinity on Mechanical Strength
,”
Sol. Energy Mater. Sol. Cells
,
95
(
1
), pp.
97
100
.
36.
Köntges
,
M.
,
Kunze
,
I.
,
Kajari-Schröder
,
S.
,
Breitenmoser
,
X.
, and
Bjørneklett
,
B.
,
2011
, “
The Risk of Power Loss in Crystalline Silicon Based Photovoltaic Modules Due to Micro-Cracks
,”
Sol. Energy Mater. Sol. Cells
,
95
(
4
), pp.
1131
1137
.
37.
Lee
,
Y.
, and
Tay
,
A. A.
,
2013
, “
Stress Analysis of Silicon Wafer-Based Photovoltaic Modules Under IEC 61215 Mechanical Load Test
,”
Energy Proc.
,
33
, pp.
265
271
.
38.
Pingel
,
S.
,
Zemen
,
Y.
,
Frank
,
O.
,
Geipel
,
T.
, and
Berghold
,
J.
,
2009
, “
Mechanical Stability of Solar Cells Within Solar Panels
,”
Proceedings of 24th EUPVSEC
, pp.
3459
3464
. https://web.archive.org/web/20170809123302id_/http://www.solon.com/export/sites/default/solonse.com/_downloads/global/article-pid/Pinge_et_all_Mechanical_Stability.pdf.
39.
Schicker
,
J.
,
Hirschl
,
C.
, and
Leidl
,
R.
,
2014
, “
Effect of PV Module Frame Boundaries on Stresses in Solar Cells
,”
J. Energy Chall. Mech.
,
1
(
3
), pp.
155
162
.
40.
Beinert
,
A. J.
,
Ebert
,
M.
,
Eitner
,
U.
, and
Aktaa
,
J.
,
2016
, “
Influence of Photovoltaic Module Mounting Systems on the Thermo-Mechanical Stresses in Solar Cells by FEM Modelling
,”
Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition
,
Munich, Germany
,
June 20–24
, pp.
1833
1836
.
41.
Wohlgemuth
,
J. H.
,
Cunningham
,
D. W.
,
Placer
,
N. V.
,
Kelly
,
G. J.
, and
Nguyen
,
A. M.
,
2008
, “The Effect of Cell Thickness on Module Reliability,”
2008 33rd IEEE Photovoltaic Specialists Conference
,
San Diego, CA
,
May 11–16
, pp.
1
4
.
IEEE
.
42.
Chen
,
C.-H.
,
Hu
,
H.-T.
,
Lin
,
F.-M.
, and
Hsieh
,
H.-H.
,
2017
, “
Residual Stress Analysis and Bow Simulation of Crystalline Silicon Solar Cells
,”
J. Zhejiang Univ. Sci. A
,
18
(
1
), pp.
49
58
.
43.
Brun
,
X. F.
, and
Melkote
,
S. N.
,
2009
, “
Analysis of Stresses and Breakage of Crystalline Silicon Wafers During Handling and Transport
,”
Sol. Energy Mater. Sol. Cells
,
93
(
8
), pp.
1238
1247
.
44.
Kajari-Schröder
,
S.
,
Kunze
,
I.
,
Eitner
,
U.
, and
Köntges
,
M.
,
2011
, “
Spatial and Orientational Distribution of Cracks in Crystalline Photovoltaic Modules Generated by Mechanical Load Tests
,”
Sol. Energy Mater. Sol. Cells
,
95
(
11
), pp.
3054
3059
.
45.
Kajari-Schršder
,
S.
,
Kunze
,
I.
, and
Kšntges
,
M.
,
2012
, “
Criticality of Cracks in PV Modules
,”
Energy Proc.
,
27
, pp.
658
663
.
46.
Sander
,
M.
,
Dietrich
,
S.
,
Pander
,
M.
,
Ebert
,
M.
, and
Bagdahn
,
J.
,
2013
, “
Systematic Investigation of Cracks in Encapsulated Solar Cells After Mechanical Loading
,”
Sol. Energy Mater. Sol. Cells
,
111
, pp.
82
89
.
47.
Dietrich
,
S.
,
Sander
,
M.
,
Pander
,
M.
, and
Ebert
,
M.
,
2012
, “
Interdependency of Mechanical Failure Rate of Encapsulated Solar Cells and Module Design Parameters
,”
Reliability of Photovoltaic Cells, Modules, Components, and Systems V
,
Oct. 2012
, pp.
123
131
.
SPIE
.
48.
Aluminium Solar Panel Mount Mid Clamp and End Clamp Supplier, Aluminium Solar Panel Mount Mid Clamp and End Clamp Custom, .
49.
Clamps of Approval: Here’s What to Look for When Selecting PV Clamps, Solar Builder Magazine, .
50.
Eitner
,
U.
,
Kajari-Schröder
,
S.
,
Köntges
,
M.
, and
Altenbach
,
H.
,
2011
, “Thermal Stress and Strain of Solar Cells in Photovoltaic Modules,”
Shell-Like Structures
,
H
Altenbach
, and
V
Eremeyev
, eds.,
Advanced Structured Materials Book Series, Vol 15, Springer
,
Berlin, Heidelberg, Germany
, pp.
453
468
.
51.
Beinert
,
A. J.
, and
Masolin
,
A.
,
2020
, “
Enhancing PV Module Thermomechanical Performance and Reliability by an Innovative Mounting Solution
,”
Presented at the 37th European PV Solar Energy Conference and Exhibition
,
Sept. 7
, p.
11
.
52.
Beinert
,
A. J.
,
Romer
,
P.
,
Heinrich
,
M.
,
Mittag
,
M.
,
Aktaa
,
J.
, and
Neuhaus
,
D. H.
,
2019
, “
The Effect of Cell and Module Dimensions on Thermomechanical Stress in PV Modules
,”
IEEE J. Photovolt.
,
10
(
1
), pp.
70
77
.
53.
Hartley
,
J. Y.
,
Owen-Bellini
,
M.
,
Truman
,
T.
,
Maes
,
A.
,
Elce
,
E.
,
Ward
,
A.
,
Khraishi
,
T.
, and
Roberts
,
S. A.
,
2020
, “
Effects of Photovoltaic Module Materials and Design on Module Deformation Under Load
,”
IEEE J. Photovolt.
,
10
(
3
), pp.
838
843
.
54.
Tummalieh
,
A.
,
Beinert
,
A. J.
,
Reichel
,
C.
,
Mittag
,
M.
, and
Neuhaus
,
H.
,
2022
, “
Holistic Design Improvement of the PV Module Frame: Mechanical, Optoelectrical, Cost, and Life Cycle Analysis
,”
Prog. Photovolt.: Res. Appl.
,
30
(
8
), pp.
1012
1022
.
55.
144HC M6 Monofacial Module, HELIENE, .
56.
Load Calculator | Fastenal, .
57.
LG 400W NeON2 BiFacial Solar Panel | LG400N2T-J5—Volts Energies, .
58.
ASM Material Data Sheet, .
59.
Overview of Materials for Thermoset Polyurethane Foam, Unreinforced, .
60.
Mo-Sci Corporation GL-0191 Soda-Lime Glass Spheres, .
61.
Silicon, Si Material Properties, .
62.
Roberts
,
R. B.
,
1982
, “
Thermal Expansion Reference Data: Silicon 80-280K
,”
J. Phys. D: Appl. Phys.
,
15
(
9
), p.
L119
.
63.
Overview of Materials for Ethylene Vinyl Acetate Copolymer (EVA), Film Grade, .
64.
Geretschläger
,
K. J.
,
Wallner
,
G. M.
, and
Fischer
,
J.
,
2016
, “
Structure and Basic Properties of Photovoltaic Module Backsheet Films
,”
Sol. Energy Mater. Sol. Cells
,
144
, pp.
451
456
.
65.
Super Quality Custom All Kinds of Aluminium Extrusion Profiles Factory Price 6061 Aluminium Extrusion Aluminum Profile, .
66.
Lumber—2022 Data—1978–2021 Historical—2023 Forecast—Price—Quote—Chart, .
67.
Aluminum—2022 Data—1989-2021 Historical—2023 Forecast—Price—Quote—Chart, .
68.
N.R.C. Canada, National Building Code of Canada 2015, (2019), .
69.
Stathopoulos
,
T.
,
Zisis
,
I.
, and
Xypnitou
,
E.
,
2014
, “
Local and Overall Wind Pressure and Force Coefficients for Solar Panels
,”
J. Wind Eng. Ind. Aerodyn.
,
125
, pp.
195
206
.
70.
Xypnitou
,
E.
,
2012
, “
Wind Loads on Solar Panel Systems Attached to Building Roofs
,”
Master’s thesis
,
Concordia University
,
Montreal, Quebec, Canada
.
71.
Wind Speed—Annual Data for Toronto, Amat. Weather Stat. Tor. Ont., .
72.
CanmetENERGY (Canada)
,
2012
,
Solar Ready Guidelines for Solar Domestic Hot Water and Photovoltaic Systems
,
CanmetENERGY
,
Ottawa, Canada
.
73.
NREL
, The Wind Prospector, .
74.
Canadian Solar 340W Solar Panel | CS1H-340MS—Volts Energies, .
75.
Shingled 680 Watt Solar Panel—Panneau Solaire 680W -All Black 340W Canadian Solar Panels With [CSA Approval], For RV, Boats, Cottages, Camping and All Off-Grid Applications (2), Sol. Power Store Can., .
76.
Canadian Solar Bi-facial CS3W-435MB-AG Solar Panel—Volts Energies, .
77.
Canadian Solar—335W, Monocrystalline Solar PV Module, Raysolar Store, .
78.
Canadian Solar—CS1Y-390MS, 390W Mono Perc., .
79.
Longi 72_144 Bi-Facial 450W 35mm Silver, .
80.
12 Solar Panel Ground Mounting Kit IronRidge, SunWatts, .
81.
Laha
,
S. K.
,
Sadhu
,
P. K.
,
Dhar
,
R. S.
,
Dey
,
R.
,
Bhattacharya
,
S.
,
Ganguly
,
A.
, and
Naskar
,
A. K.
,
2021
, “
Analysis of Mechanical Stress and Structural Deformation on a Solar Photovoltaic Panel Through Various Wind Loads
,”
Microsyst. Technol.
,
27
(
9
), pp.
3465
3474
.
82.
Assmus
,
M.
,
Jack
,
S.
,
Weiss
,
K. A.
, and
Koehl
,
M.
,
2011
, “
Measurement and Simulation of Vibrations of PV-Modules Induced by Dynamic Mechanical Loads
,”
Prog. Photovolt.: Res. Appl.
,
19
(
6
), pp.
688
694
.
83.
Bosco
,
N.
,
Silverman
,
T. J.
,
Wohlgemuth
,
J.
,
Kurtz
,
S.
,
Inoue
,
M.
,
Sakurai
,
K.
,
Shioda
,
T.
, et al
,
2013
, “
Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue
,”
2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
,
Tampa, FL,
June,
IEEE, pp.
3173
3178
.
84.
Bosco
,
N.
,
Silverman
,
T. J.
, and
Kurtz
,
S.
,
2016
, “
Climate Specific Thermomechanical Fatigue of Flat Plate Photovoltaic Module Solder Joints
,”
Microelectron. Reliab.
,
62
, pp.
124
129
.
85.
The Curse of the Solar Industry? Solar Panel Warranty, .
86.
Lehmann
,
S.
,
2012
, “
Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems
,”
Sustainability
,
4
(
10
), pp.
2707
2742
.
87.
Embodied Carbon Footprint Database, Circ. Ecol., .
88.
Brinksma
,
S.
,
2021
, “
Developing an Open-Source Circular PV Module
,”
Master’s thesis
,
TU Delft, & Universiteit Leiden
,
Delft & Leiden, The Netherlands
.
You do not currently have access to this content.