Abstract

The efficient use and understanding of photovoltaic thermal (PVT) modules require accurately evaluating the temperature of their photovoltaic cells. But due to their specific composition, measuring this temperature directly is usually very complicated, if not impossible in practice. In this article, we present an original methodology to estimate the temperature of the cells of a PVT module. In order to do this, we simultaneously conduct experiments on both PVT and PV modules equipped with identical PV cells, and compare their electrical performance. The temperature of the PV module’s back side is measured and used to estimate the temperature of the PV cells. The latter is then combined with the electrical power output difference between PV and PVT modules in order to obtain, through a specifically developed thermal model, the cell temperature of the PVT module. In addition, an experimental comparative analysis of different PVT modules is presented. The methodology and the results are promising but the experimental measurements used are subject to significant uncertainties that impact the accuracy of the estimation. The model uses an innovative approach to estimate the PV cell temperature of PVT modules, and recommendations are provided to optimize experimental data measurement accuracy in order to use this model in the best possible conditions.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Nguyen
,
T. D.
, and
Musgens
,
F.
,
2022
, “
What Drives the Accuracy of PV Output Forecasts?
Appl. Energy
,
323
, p.
119603
.
2.
Liu
,
B.
,
Wang
,
H.
,
Liang
,
X.
,
Wang
,
Y.
, and
Feng
,
Z.
,
2024
, “
Recycling to Alleviate the Gap Between Supply and Demand of Raw Materials in China’s Photovoltaic Industry
,”
Res. Conserv. Recycl.
,
201
, p.
107324
.
3.
Hassan
,
Q.
,
Viktor
,
P.
,
Al-Musawi
,
T. J.
,
Ali
,
B. M.
,
Algburi
,
S.
,
Alzoubi
,
H. M.
,
Al-Jiboory
,
A. K.
,
Sameen
,
A. Z.
,
Salman
,
H. M.
, and
Jaszczur
,
M.
,
2024
, “
The Renewable Energy Role in the Global Energy Transformations
,”
Renew. Energy Focus
,
48
, p.
100545
.
4.
Carneiro
,
T. C.
,
Marques de Carvalho
,
P. C.
,
Alves dos Santos
,
H.
,
Lima
,
M. A. F. B.
, and
de Souza Braga
,
A. P.
,
2022
, “
Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010801
.
5.
Joshi
,
A. S.
,
Dincer
,
I.
, and
Reddy
,
B. V.
,
2009
, “
Performance Analysis of Photovoltaic Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
13
(
8
), pp.
1884
1897
.
6.
Wysocki
,
J. J.
, and
Rappaport
,
P.
,
1960
, “
Effect of Temperature on Photovoltaic Solar Energy Conversion
,”
J. Appl. Phys.
,
31
(
3
), pp.
571
578
.
7.
Hasan
,
A. A. A.
,
Alkahtani
,
A. A.
,
Shahahmadi
,
S. A.
,
Alam
,
M. N. E.
,
Islam
,
M. A.
, and
Amin
,
N.
,
2021
, “
Delamination-and Electromigration-Related Failures in Solar Panels–A Review
,”
Sustainability
,
13
(
12
), p.
6882
.
8.
Jones
,
A. D.
, and
Underwood
,
C. P.
,
2001
, “
A Thermal Model for Photovoltaic Systems
,”
Sol. Energy
,
70
(
4
), pp.
349
359
.
9.
Haloui
,
H.
,
Touafek
,
K.
, and
Khelifa
,
A.
,
2022
, “
Modeling of a Hybrid Thermal Photovoltaic (PVT) Collector Based on Thin Film Organic Solar Cells
,”
Electric Power Syst. Res.
,
210
, pp.
1
6
.
10.
Kulkarni
,
R. S.
,
Shinde
,
R. B.
, and
Talange
,
D. B.
,
2018
, “
Performance Evaluation and a New Thermal Model for a Photovoltaic-Thermal Water Collector System
,”
International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)
,
Sg. Long, Cheras, Kajang, Malaysia
,
May 29–June 1
, pp.
106
111
.
11.
Aste
,
N.
,
Leonforte
,
F.
, and
Del Pero
,
C.
,
2013
, “
Simulation and Model Validation of Uncovered PVT Solar System
,”
International Conference on Clean Electrical Power (ICCEP)
,
Alghero, Italy
,
June 11–13
, pp.
789
795
.
12.
Gomaa
,
M.
,
Ahmed
,
M.
, and
Rezk
,
H.
,
2022
, “
Temperature Distribution Modeling of PV and Cooling Water PV/T Collectors Through Thin and Thick Cooling Cross-Fined Channel Box
,”
Energy Rep.
,
8
(
1
), pp.
1144
1153
.
13.
Nahar
,
A.
,
Parvin
,
S.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2023
, “
Thermo-Fluid Physiognomies of a Photovoltaic Thermal Collector: A Comparative Study With Different Flow Channel Materials
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011001
.
14.
Kayri
,
I.
, and
Aydın
,
H.
,
2022
, “
ANN Based Prediction of Module Temperature in a Single Axis PV System
,” Global Energy Conference (GEC), Batman, Turkey, Oct. 26–29, pp.
361
367
.
15.
Davalos-Orozco
,
O.
,
Rodrigo
,
P. M.
,
Brambila-Paz
,
F.
, and
Rosas-Caro
,
J. C.
,
2024
, “
An Accurate Explicit Six-Parameter Solar Cell Model Based on Single-Diode and Its Parameter Extraction for Seven Photovoltaic Technologies
,”
ASME J. Sol. Energy Eng.
,
146
(
2
), p.
021008
.
16.
Friesen
,
G.
,
Herrmann
,
W.
,
Belluardo
,
G.
, and
Herteleer
,
B.
,
2018
, “
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best Practice, International Energy Agency (IEA)
,” Technical Report IEA–PVPS T13–11.
17.
Wang
,
H.
,
Chen
,
Y.
,
Fan
,
T.
,
Zhang
,
C.
,
Ni
,
W.
,
Xu
,
J.
, and
Zhang
,
J.
,
2022
, “
Cell-Level PV Module Temperature Estimation Method
,”
IEEE J. Photo.
,
12
(
6
), pp.
1513
1521
.
18.
Mussard
,
M.
,
Maret
,
P.
,
Zhu
,
J.
,
Foss
,
S. E.
,
Li
,
Z.
,
Shen
,
W.
,
Zhao
,
Y.
, and
Dai
,
Y.
,
2022
, “
Comparative Analysis of the Performance of Four Different Photovoltaic-Thermal Modules
,”
EuroSun Conference
,
Kassel, Germany
,
Sept. 25–29
.
19.
Mertens
,
K.
,
2014
,
Photovoltaics: Fundamentals, Technology and Practice
,
John Wiley & Sons
,
Chichester, UK
.
20.
Dupré
,
O.
,
Vaillon
,
R.
, and
Green
,
M. A.
,
2017
,
Temperature Coefficients of Photovoltaic Devices, Thermal Behavior of Photovoltaic Devices
,
Springer
,
New York
.
21.
Aghaei
,
M.
,
Fairbrother
,
A.
,
Gok
,
A.
,
Ahmad
,
S.
,
Kazim
,
S.
,
Lobato
,
K.
,
Oreski
,
G.
,
Reinders
,
A.
,
Schmitz
,
J.
,
Theelen
,
M.
,
Yilmaz
,
P.
, and
Kettle
,
J.
,
2022
, “
Review of Degradation and Failure Phenomena in Photovoltaic Modules
,”
Renew. Sustain. Energy Rev.
,
159
, p.
112160
.
22.
French
,
R. H.
,
Bruckman
,
L. S.
,
Moser
,
D.
,
Lindig
,
S.
,
van Iseghem
,
M.
,
Müller
,
B.
,
Stein
,
J. S.
,
Richter
,
M.
,
Herz
,
M.
,
Van Sark
,
W.
, and
Baumgartner
,
F.
,
2021
, “
Assessment of Performance Loss Rate of PV Power Systems, International Energy Agency (IEA)
,” Technical Report IEA-PVPS T13-22.
23.
Paudyal
,
B.
, and
Imenes
,
A.
,
2021
, “
Investigation of Temperature Coefficients of PV Modules Through Field Measured Data
,”
Sol. Energy
,
224
, pp.
425
439
.
You do not currently have access to this content.