Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Despite the extensive body of research on photovoltaic (PV)/thermal systems, a gap remains in evaluating their performance in residential settings. This study aims to bridge this gap by focusing on the energy modeling of a PV/Thermal (PVT) hybrid panel that incorporates heat pipe technology. The evaluation is conducted through MATLAB code to assess the system's capability to fulfill the electricity and heating demands of residential buildings. The model's reliability is affirmed by comparing it with experimental data from a PVT panel tested in Sydney, exploring the transient variations in both water heat gain rates and power generation. The model's precision is evident from the percentage of error in the estimated temperatures of the PV panel based on the test results under various weather conditions, which ranged from −8% to 6%. This method was also utilized to determine the overall energy efficiency of the PVT panel under different climatic conditions. The results reveal that the overall energy efficiency of the proposed PVT panel, on a typical day, is approximately 45%, significantly outperforming traditional PV panels by more than double. Furthermore, the payback period for a typical residential PVT system, providing both hot water and electricity, is found substantially shorter than that of installing separate PV and solar hot water systems, highlighting the economic and environmental benefits of the proposed hybrid system.

References

1.
Wolf
,
M.
,
1976
, “
Performance Analyses of Combined Heating and Photovoltaic Power Systems for Residences
,”
Energy Convers.
,
16
(
1–2
), pp.
79
90
.
2.
Kern
,
E. C.
, and
Russell
,
M. C.
,
1978
,
Combined Photovoltaic and Thermal Hybrid Collector Systems
,
Massachusetts Institute of Technology
,
Lexington, KY
. COO-4577-3; CONF-780619-24. https://www.osti.gov/servlets/purl/6352146.
3.
Hendrie
,
S. D.
,
1980
,
Comparison of Theory and Experiment for Photovoltaic/Thermal Collector Performance
,
Massachusetts Institute of Technology
,
Lexington, KY
.COO-4094-74; CONF-800106-15. https://www.osti.gov/servlets/purl/5666552.
4.
Abd El-Hamid
,
M.
,
Wei
,
G.
,
Sherin
,
M.
,
Cui
,
L.
, and
Du
,
X.
,
2021
, “
Comparative Study of Different Photovoltaic/Thermal Hybrid Configurations From Energetic and Exergetic Points of View: A Numerical Analysis
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061006
.
5.
Garg
,
H. P.
,
Agarwal
,
R. K.
, and
Joshi
,
J. C.
,
1994
, “
Experimental Study on a Hybrid Photovoltaic-Thermal Solar Water Heater and its Performance Predictions
,”
Energy Convers. Manage.
,
35
(
7
), pp.
621
633
.
6.
Sopian
,
K.
,
Liu
,
H. T.
,
Kakac
,
S.
, and
Veziroglu
,
T. N.
,
2000
, “
Performance of a Double Pass Photovoltaic Thermal Solar Collector Suitable for Solar Drying Systems
,”
Energy Convers. Manage.
,
41
(
4
), pp.
353
365
.
7.
Zondag
,
H. A.
,
de-Vries
,
D. W.
,
van-Helden
,
W. G. J.
,
van-Zolingen
,
R. J. C.
, and
van-Steenhoven
,
A. A.
,
2002
, “
The Thermal and Electrical Yield of a PV-Thermal Collector
,”
Sol. Energy
,
72
(
2
), pp.
113
128
.
8.
Gang
,
P.
,
Huide
,
F.
,
Tao
,
Z.
, and
Jie
,
J.
,
2011
, “
A Numerical and Experimental Study on a Heat Pipe PV/T System
,”
Sol. Energy
,
85
(
5
), pp.
911
921
.
9.
Wu
,
S.
,
Zhang
,
Q.
,
Xiao
,
L.
, and
Guo
,
F.
,
2011
, “
A Heat Pipe Photovoltaic/Thermal (PV/T) Hybrid System and Its Performance Evaluation
,”
Energy Build.
,
43
(
12
), pp.
3558
3567
.
10.
Long
,
H.
,
Chow
,
T.-T.
, and
Ji
,
J.
,
2017
, “
Building-Integrated Heat Pipe Photovoltaic/Thermal System for Use in Hong Kong
,”
Solar. Energy
,
155
, pp.
1084
1091
.
11.
Cheng
,
X.
,
Zou
,
Z.
,
Yu
,
G.
,
Ma
,
G.
,
Ye
,
H.
,
Li
,
Y.
, and
Liu
,
H.
,
2021
, “
Development and Performance of Roof-Based Building-Integrated Photovoltaic-Thermal Systems: A Review
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041009
.
12.
Diallo
,
T.
,
Yu
,
M.
,
Zhou
,
J.
,
Zhao
,
X.
,
Shittu
,
S.
,
Li
,
G.
,
Ji
,
J.
, and
Hardy
,
D.
,
2019
, “
Energy Performance Analysis of a Novel Solar PVT Loop Heat Pipe Employing a Microchannel Heat Pipe Evaporator and a PCM Triple Heat Exchanger
,”
Energy
,
167
, pp.
866
888
.
13.
Shittu
,
S.
,
Li
,
G.
,
Zhao
,
X.
,
Akhlaghi
,
Y. G.
,
Ma
,
X.
, and
Yu
,
M.
,
2019
, “
Comparative Study of a Concentrated Photovoltaic-Thermoelectric System With and Without Flat Plate Heat Pipe
,”
Energy Convers. Manage.
,
193
, pp.
1
14
.
14.
Senthil
,
R.
,
Elavarasan
,
R. M.
,
Pugazhendhi
,
R.
,
Premkumar
,
M.
,
Vengadesan
,
E.
,
Navakrishnan
,
S.
,
Islam
,
M. R.
, and
Natarajan
,
S. K.
,
2021
, “
A Holistic Review on the Integration of Heat Pipes in Solar Thermal and Photovoltaic Systems
,”
Sol. Energy
,
227
, pp.
577
605
.
15.
Ravi Kumar
,
K.
,
Krishna Chaitanya
,
N. V. V.
, and
Sendhil Kumar
,
N.
,
2021
, “
Solar Thermal Energy Technologies and Its Applications for Process Heating and Power Generation—A Review
,”
J. Cleaner Prod.
,
282
, p.
125296
.
16.
Herez
,
A
,
El Hage
,
H.
,
Lemenand
,
T
,
Ramadan
,
M
and
Khaled
,
M
,
2020
, “
Review on Photovoltaic/Thermal Hybrid Solar Collectors: Classifications, Applications and New Systems
,”
Sol. Energy
,
207
, pp.
1321
1347
.
17.
Brahim
,
T.
, and
Jemni
,
A.
,
2017
, “
Economical Assessment and Applications of Photovoltaic/Thermal Hybrid Solar Technology: A Review
,”
Sol. Energy
,
153
, pp.
540
561
.
18.
Noxpanco
,
M. G.
,
Wilkins
,
J.
, and
Riffat
,
S.
,
2020
, “
A Review of the Recent Development of Photovoltaic/Thermal (PV/T) Systems and Their Applications
,”
Future Cities Environ.
,
6
(
1
), pp.
1
16
.
19.
Bandaru
,
S. H.
,
Becerra
,
V.
,
Khanna
,
S.
,
Radulovic
,
J.
,
Hutchinson
,
D.
, and
Khusainov
,
R.
,
2021
, “
A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities
,”
Energies
,
14
(
13
), p.
3853
.
20.
Miglioli
,
A.
,
Aste
,
N.
,
Del Pero
,
C.
, and
Leonforte
,
F.
,
2023
, “
Photovoltaic-thermal Solar-Assisted Heat Pump Systems for Building Applications: Integration and Design Methods
,”
Energy Built Environ.
,
4
(
1
), pp.
39
56
.
21.
Wen
,
X.
,
Ji
,
J.
,
Li
,
Z.
,
Song
,
Z.
, and
Yao
,
T.
,
2023
, “
Performance Characterization of a PV/T System Employing Micro-Channel Heat Pipes and Thermoelectric Generators: An Experimental and Numerical Study
,”
Energy
,
264
, p.
126182
.
22.
Gao
,
Y.
,
Wu
,
D.
,
Dai
,
Z.
,
Wang
,
C.
,
Chen
,
B.
, and
Zhang
,
X.
,
2023
, “
A Comprehensive Review of the Current Status, Developments, and Outlooks of Heat Pipe Photovoltaic and Photovoltaic/Thermal Systems
,”
Renew. Energy
,
207
, pp.
539
574
.
23.
Odeh
,
S.
, and
Feng
,
J.
,
2023
, “
Long Term Performance Assessment of a Residential PV/Thermal Hybrid System
,”
Energies
,
16
(
1
), p.
121
.
24.
Odeh
,
S.
, and
Habbouchi
,
S.
,
2013
, “
Hybrid Energy Production PV Solar Panel
”, Certified Innovation Patent, Australian Patent Office, Patent No. AU 2013100028 B4. https://ipsearch.ipaustralia.gov.au/patents/2013100028.
25.
Solcast API
,
2023
, Live and Forecast Solar and Weather Data, https://solcast.com/time-series.
26.
Çengel
,
Y. A.
,
2008
,
Introduction to Thermodynamics and Heat Transfer
, 2nd ed.,
McGraw-Hill
,
New York
.
27.
Holman
,
J. P.
,
2010
,
Heat Transfer
, 10th ed.,
McGraw Hill
,
New York
.
28.
Algarni
,
S.
, and
Nutter
,
D.
,
2015
, “
Survey of Sky Effective Temperature Models Applicable to Building Envelope Radiant Heat Transfer
,”
ASHRAE Trans.
,
121
(
2
), pp.
351
363
.
29.
Odeh
,
S.
, and
Behnia
,
M.
,
2009
, “
Improving PhotoVoltaic Module Efficiency Using Water Cooling
,”
Heat Transfer Eng. J.
,
30
(
6
), pp.
499
505
.
30.
RETScreen Expert
,
2021
, Clean Energy Management Software, Version 8.1, CanmetENERGY, Natural Resources Canada. https://natural-resources.canada.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465.
31.
Australian’s Guide to Environmentally Sustainable Homes, Your Home
,
2021
, 6th Ed,
Australian Government,
Canberra, Australia
.
You do not currently have access to this content.