Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

3D-printing technology was applied to fabricate novel solar thermal collection tubes that have internal heat transfer enhancement fins and external surfaces with high solar absorptivity and low emissivity due to the ability to use different materials in one tube. Helical fins were selected to introduce circumferential flow and thus minimize the circumferential temperature difference of the tube that receives sunlight on one side. The structures of the helical fins were previously optimized from computational fluid dynamics (CFD) analysis with the objective of low entropy production rate by looking for high heat transfer coefficient and relatively lower pressure loss. High-temperature alloy, Inconel-718, was used to 3D print the tubes, which can resist corrosion for the potential application of molten chloride salts as heat transfer fluid. Experimental tests were carried out using water as the heat transfer fluid with the high heat flux provided by a tubular furnace heater. The tested Reynolds number ranges from 3.9 × 103 to 6.1 × 104. Heat transfer coefficients of up to 2.8 times that of the smooth tube could be obtained with the expense of increased pressure loss compared to that of the smooth tube. The total system entropy generation can be significantly reduced due to the benefit of heat transfer enhancement that is greater than the expenses of the increased pressure loss. The experimental results of the 3D-printed heat transfer tubes confirmed the CFD-based results of fin optimization. The novel heat transfer tube is recommended for application in concentrating solar power systems.

References

1.
Alfulayyih
,
Y. M.
,
Li
,
P.
, and
Gwesha
,
A. O.
,
2020
, “
A Generic Algorithm for Planning the Year-Round Solar Energy Harvest/Storage to Supply Solar-Based Stable Power
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
041002
.
2.
Carneiro
,
T. C.
,
Marques de Carvalho
,
P. C.
,
Alves dos Santos
,
H.
,
Lima
,
M. A. F. B.
, and
Plinio de Souza Braga
,
A.
,
2022
, “
Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010801
.
3.
Kennedy
,
K. K.
,
Ruggles
,
T. H.
,
Rinaldi
,
K.
,
Dowling
,
J. A.
,
Duan
,
L.
,
Caldeira
,
K.
, and
Lewis
,
N. S.
,
2022
, “
The Role of Concentrated Solar Power With Thermal Energy Storage in Least-Cost Highly Reliable Electricity Systems Fully Powered by Variable Renewable Energy
,”
Adv. Appl. Energy
,
6
, p.
100091
.
4.
Nunes
,
V. M. B.
,
Queirós
,
C. S.
,
Lourenço
,
M. J. V.
,
Santos
,
F. J. V.
, and
Nieto de Castro
,
C. A.
,
2016
, “
Molten Salts as Engineering Fluids—A Review Part I. Molten Alkali Nitrates
,”
Appl. Energy
,
183
, pp.
603
611
.
5.
Li
,
Y.
,
Xu
,
X.
,
Wang
,
X.
,
Li
,
P.
,
Hao
,
Q.
, and
Xiao
,
B.
,
2017
, “
Survey and Evaluation of Equations for Thermophysical Properties of Binary/Ternary Eutectic Salts From NaCl, KCl, MgCl2, CaCl2, ZnCl2 for Heat Transfer and Thermal Storage Fluids in CSP
,”
Sol. Energy
,
152
, pp.
57
79
.
6.
Zhang
,
Y.
,
Wang
,
X.
,
Hu
,
Q.
,
Li
,
P.
,
Liu
,
Q.
, and
Xu
,
B.
,
2022
, “
Experimental Study of Eutectic Molten Salts NaCl/KCl/ZnCl2 Heat Transfer Inside a Smooth Tube for High-Temperature Application
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
044501
.
7.
Ho
,
C. K.
,
2017
, “A New Generation of Solid Particle and Other High-Performance Receiver Designs for Concentrating Solar Thermal (CST) Central Tower Systems,”
Advances in Concentrating Solar Thermal Research and Technology
,
M. J.
Blanco
, and
L. R.
Santigosa
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
107
128
.
8.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
,
2013
, “
Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021011
.
9.
Xu
,
X. K.
,
Wang
,
X. X.
,
Li
,
P. W.
,
Li
,
Y. Y.
,
Hao
,
Q.
,
Xiao
,
B.
,
Elsentriecy
,
H.
, and
Gervasio
,
D.
,
2018
, “
Experimental Test of Properties of KCl–MgCl2 Eutectic Molten Salt for Heat Transfer and Thermal Storage Fluid in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051011
.
10.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part-II-Transition and Turbulent Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
890
896
.
11.
Withers
,
J. G.
,
1980
, “
Tube-Side Heat Transfer and Pressure Drop for Tubes Having Helical Internal Ridging With Turbulent/Transitional Flow of Single-Phase Fluid. Part 1. Single-Helix Ridging
,”
Heat Transfer Eng.
,
2
(
1
), pp.
48
58
.
12.
Ye
,
W.
,
Zhang
,
S.
,
Mendez
,
L. L.
,
Farias
,
M.
,
Li
,
J.
,
Xu
,
B.
,
Li
,
P.
, and
Zhang
,
Y.
,
2021
, “
Numerical Simulation of the Melting and Alloying Processes of Elemental Titanium and Boron Powders Using Selective Laser Alloying
,”
J. Manuf. Processes
,
64
, pp.
1235
1247
.
13.
Mueller
,
C. T.
,
2016
, “
3D Printed Structures: Challenges and Opportunities
,”
Struct. Mag.
, pp.
54
55
.
14.
Pidaparthi
,
B.
,
Li
,
P.
, and
Missoum
,
S.
,
2022
, “
Entropy-Based Optimization for Heat Transfer Enhancement in Tubes With Helical Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
1
), p.
012001
.
15.
Wang
,
X.
,
Rincon
,
J. D.
,
Li
,
P.
,
Zhao
,
Y.
, and
Vidal
,
J.
,
2021
, “
Thermophysical Properties Experimentally Tested for NaCl-KCl-MgCl2 Eutectic Molten Salt as a Next-Generation High-Temperature Heat Transfer Fluids in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041005
.
16.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1997
,
Introduction to Heat Transfer
, 5th ed.,
John Wiley & Sons, Inc.
,
Cambridge, MA
.
17.
Clain
,
F.
,
Teixeira
,
P.
,
Araújo
,
D.
,
2016
, “
A Heat Source Model to Simulate Welding Processes With Magnetic Deflection
.”
16th Brazilian Congress of Thermal Sciences and Engineering
, V
itória, Espírito Santo, Brazil
,
Nov. 1–5
, pp.
1
7
.
18.
Agazhanov
,
A. S.
,
Samoshkin
,
D. A.
, and
Kozlovskii
,
Y. M.
,
2019
, “
Thermophysical Properties of Inconel 718 Alloy
,”
J. Phys. Conf. Ser.
,
1382
(
1
), p.
012175
.
19.
Ivanov
,
E.
,
Kotsilkova
,
R.
,
Xia
,
H.
,
Chen
,
Y.
,
Donato
,
R. K.
,
Donato
,
K.
,
Godoy
,
A. P.
, et al
,
2019
, “
PLA/Graphene/MWCNT Composites With Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applications
,”
Appl. Sci.
,
9
(
6
), p.
1209
.
20.
Sonsalla
,
T.
,
Moore
,
A. L.
,
Meng
,
W. J.
,
Radadia
,
A. D.
, and
Weiss
,
L.
,
2018
, “
3-D Printer Settings Effects on the Thermal Conductivity of Acrylonitrile Butadiene Styrene (ABS)
,”
Polym. Test.
,
70
, pp.
389
395
.
21.
Eshkabilov
,
S.
,
Ara
,
I.
,
Sevostianov
,
I.
,
Azarmi
,
F.
, and
Tangpong
,
X.
,
2021
, “
Mechanical and Thermal Properties of Stainless Steel Parts, Manufactured by Various Technologies, in Relation to Their Microstructure
,”
Int. J. Eng. Sci.
,
159
, p.
103398
.
22.
Simmons
,
J. C.
,
Chen
,
X.
,
Azizi
,
A.
,
Daeumer
,
M. A.
,
Zavalij
,
P. Y.
,
Zhou
,
G.
, and
Schiffres
,
S. N.
,
2020
, “
Influence of Processing and Microstructure on the Local and Bulk Thermal Conductivity of Selective Laser Melted 316L Stainless Steel
,”
Addit. Manuf.
,
32
, p.
100996
.
23.
Hakeem
,
A. S.
,
Patel
,
F.
,
Minhas
,
N.
,
Malkawi
,
A.
,
Aleid
,
Z.
,
Ehsan
,
M. A.
,
Sharrofna
,
H.
, and
Ghanim
,
A. A.
,
2021
, “
Comparative Evaluation of Thermal and Mechanical Properties of Nickel Alloy 718 Prepared Using Selective Laser Melting, Spark Plasma Sintering, and Casting Methods
,”
J. Mater. Res. Technol.
,
12
, pp.
870
881
.
24.
Pidaparthi
,
B.
,
Missoum
,
S.
,
Xu
,
B.
, and
Li
,
P.
,
2023
, “
Helical Fins for Concentrated Solar Receivers: Design Optimization and Entropy Analysis
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
121706
.
25.
Nilpueng
,
K.
, and
Wongwises
,
S.
,
2015
, “
Experimental Study of Single-Phase Heat Transfer and Pressure Drop Inside a Plate Heat Exchanger With a Rough Surface
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
268
275
.
26.
Haddad
,
F.
, and
Li
,
P. W.
,
2024
, “
Optimization of Dimensions of Smooth and Twisted-Tape Inserted Tubes for Heat Transfer With NaCl/KCl/MgCl2 Molten Salts by Principle of Entropy Generation Minimization
,”
ASME J. Sol. Energy Eng.
,
146
(
1
), p.
011003
.
You do not currently have access to this content.