Abstract

Heating, ventilation, and air conditioning (HVAC) systems are notorious for their high energy consumption in buildings, particularly in regions with extreme cooling or heating demands. Air filters play a vital role in these systems, affecting both energy efficiency and indoor air quality. However, high-efficiency filters, due to their significant increase in airflow resistance, require excessive energy compared to low-efficiency filters. This poses a challenge in finding the optimal compromise between reducing energy consumption and enhancing indoor air quality. To address this challenge, a meticulous selection process is crucial in achieving a middle ground that satisfies both objectives. Proper sizing and design of air filters are therefore essential for successful HVAC projects. This paper introduces the utilization of optimization techniques as decision-support tools to determine the optimal design parameters of commonly used HVAC air filters under various scenarios. The developed model incorporates multiple objectives and design criteria, including life-cycle cost (LCC), filter size, and efficiency. By leveraging the differential evolution optimization technique, an algorithm is developed to forecast a range of optimal solutions (Pareto front) based on predefined system criteria and boundary conditions. The model is extensively tested and demonstrates exceptional performance in returning optimal solutions, in addition to the capability of narrowing down and converging to a single value. This methodology holds significant potential in assisting investment decisions concerning HVAC air filters, providing valuable insights for optimizing energy efficiency while ensuring satisfactory indoor air quality.

References

1.
Khabiri
,
O.
, and
Ghavami
,
M.
,
2015
, “
Efficient HVAC System in Green Building Design
,”
J. Nat. Sci. Sustain. Technol.
,
9
(
3
), p.
559
.
2.
Fedel
,
T.
,
2012
, “
Air Filtration: Balanced Approach Gives High Filtration and Energy Efficiencies
,”
Filtr. Sep.
,
49
(
4
), pp.
25
27
.
3.
Nassif
,
N.
,
2012
, “The Impact of Air Filter Pressure Drop on the Performance of Typical Air-Conditioning Systems,”
Building Simulation
, Vol. 5,
Springer
,
New York
, pp.
345
350
.
4.
Liu
,
G.
,
Xiao
,
M.
,
Zhang
,
X.
,
Gal
,
C.
,
Chen
,
X.
,
Liu
,
L.
,
Pan
,
S.
,
Wu
,
J.
,
Tang
,
L.
, and
Clements-Croome
,
D.
,
2017
, “
A Review of Air Filtration Technologies for Sustainable and Healthy Building Ventilation
,”
Sustain. Cities Soc.
,
32
, pp.
375
396
.
5.
Stutman
,
M. B.
,
2012
, “
Using Field Measurements of Air Filter Performance and HVAC Fan Energy Measurements to Select Air Filters With Lowest Life Cycle Cost
,”
Strateg. Plann. Energy Environ.
,
32
(
1
), pp.
26
41
.
6.
Gustavsson
,
J.
,
2002
, “
Software Programme That Calculates the Life Cycle Cost of Air Filters
,”
Filtr. Sep.
,
39
(
9
), pp.
22
26
.
7.
Dallas
,
A. J.
,
Ding
,
L.
,
Joriman
,
J.
,
Zastera
,
D.
,
Seguin
,
K.
, and
Empson
,
J.
,
2006
, “
Low-Pressure Drop Airborne Molecular Contaminant Filtration Using Open-Channel Networks
,”
Metrology, Inspection, and Process Control for Microlithography XX
,
SPIE
.
8.
Hasan
,
A.
,
Vuolle
,
M.
, and
Sirén
,
K.
,
2008
, “
Minimisation of Life Cycle Cost of a Detached House Using Combined Simulation and Optimisation
,”
Build. Environ.
,
43
(
12
), pp.
2022
2034
.
9.
Kneifel
,
J.
,
2010
, “
Life-Cycle Carbon and Cost Analysis of Energy Efficiency Measures in New Commercial Buildings
,”
Energy Build.
,
42
(
3
), pp.
333
340
.
10.
Ibrahim
,
M.
,
Ghaddar
,
N.
, and
Ghali
,
K.
,
2012
, “
Optimal Location and Thickness of Insulation Layers for Minimizing Building Energy Consumption
,”
J. Build. Perform. Simul.
,
5
(
6
), pp.
384
398
.
11.
Sharif
,
S. A.
, and
Hammad
,
A.
,
2019
, “
Simulation-Based Multi-objective Optimization of Institutional Building Renovation Considering Energy Consumption, Life-Cycle Cost and Life-Cycle Assessment
,”
J. Build. Eng.
,
21
, pp.
429
445
.
12.
Phillips
,
R.
,
Troup
,
L.
,
Fannon
,
D.
, and
Eckelman
,
M. J.
,
2020
, “
Triple Bottom Line Sustainability Assessment of Window-to-Wall Ratio in US Office Buildings
,”
Build. Environ.
,
182
, p.
107057
.
13.
França
,
W. T.
,
Barros
,
M. V.
,
Salvador
,
R.
,
de Francisco
,
A. C.
,
Moreira
,
M. T.
, and
Piekarski
,
C. M.
,
2021
, “
Integrating Life Cycle Assessment and Life Cycle Cost: A Review of Environmental-Economic Studies
,”
Int. J. Life Cycle Assess.
,
26
(
2
), pp.
244
274
.
14.
Platt
,
G.
,
Li
,
J.
,
Li
,
R.
,
Poulton
,
G.
,
James
,
G.
, and
Wall
,
J
,
2010
, “
Adaptive HVAC Zone Modeling for Sustainable Buildings
,”
Energy Build.
,
42
(
4
), pp.
412
421
.
15.
Stephens
,
B.
,
Novoselac
,
A.
, and
Siegel
,
J. A.
,
2010
, “
The Effects of Filtration on Pressure Drop and Energy Consumption in Residential HVAC Systems (RP-1299)
,”
HVACR Res.
,
16
(
3
), pp.
273
294
.
16.
Azimi
,
P.
, and
Stephens
,
B.
,
2013
, “
HVAC Filtration for Controlling Infectious Airborne Disease Transmission in Indoor Environments: Predicting Risk Reductions and Operational Costs
,”
Building Environ.
,
70
, pp.
150
160
.
17.
Voinea
,
M.
,
Necula
,
H.
, and
Bitir-Istrate
,
I.
,
2017
, “
Aspects Regarding Fouling of the Heat Exchanger Coils and Filters on the Performance of Packaged Air to Air HVAC System
,”
2017 International Conference on ENERGY and ENVIRONMENT (CIEM)
,
IEEE
.
18.
Xia
,
T.
,
Bian
,
Y.
,
Zhang
,
L.
, and
Chen
,
C.
,
2018
, “
Relationship Between Pressure Drop and Face Velocity for Electrospun Nanofiber Filters
,”
Energy Build.
,
158
, pp.
987
999
.
19.
Raynor
,
P. C.
, and
Chae
,
S. J.
,
2003
, “
Dust Loading on Electrostatitically Charged Filters in a Standard Test and a Real HVAC System
,”
Filtr. Sep.
,
40
(
2
), pp.
35
39
.
20.
Zhao
,
P.
,
Siegel
,
J.
, and
Corsi
,
R.
,
2007
, “
Ozone Removal by HVAC Filters
,”
Atmos. Environ.
,
41
(
15
), pp.
3151
3160
.
21.
Pigeot-Remy
,
S.
,
Lazzaroni
,
J. C.
,
Simonet
,
F.
,
Petinga
,
P.
,
Vallet
,
C.
,
Petit
,
P.
,
Vialle
,
P. J.
, and
Guillard
,
C.
,
2014
, “
Survival of Bioaerosols in HVAC System Photocatalytic Filters
,”
Appl. Catal., B
,
144
, pp.
654
664
.
22.
Leavey
,
A.
,
Fu
,
Y.
,
Sha
,
M.
,
Kutta
,
A.
,
Lu
,
C.
,
Wang
,
W.
,
Drake
,
B.
,
Chen
,
Y.
, and
Biswas
,
P.
,
2015
, “
Air Quality Metrics and Wireless Technology to Maximize the Energy Efficiency of HVAC in a Working Auditorium
,”
Build. Environ.
,
85
, pp.
287
297
.
23.
Azimi
,
P.
,
Zhao
,
D.
, and
Stephens
,
B.
,
2016
, “
Modeling the Impact of Residential HVAC Filtration on Indoor Particles of Outdoor Origin (RP-1691)
,”
Sci. Technol. Built Environ.
,
22
(
4
), pp.
431
462
.
24.
Shehab
,
M.
,
Khader
,
A. T.
, and
Al-Betar
,
M. A.
,
2017
, “
A Survey on Applications and Variants of the Cuckoo Search Algorithm
,”
Appl. Soft Comput.
,
61
, pp.
1041
1059
.
25.
Blum
,
C.
, and
Roli
,
A.
,
2003
, “
Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison
,”
ACM Comput. Surv.
,
35
(
3
), pp.
268
308
.
26.
Sagayam
,
K.M.
,
Hemanth
,
D. J.
,
Vasanth
,
X. A.
,
Henesy
,
L. E.
, and
Ho
,
C. C.
,
2018
, “Optimization of a HMM-Based Hand Gesture Recognition System Using a Hybrid Cuckoo Search Algorithm,”
Hybrid Metaheuristics for Image Analysis
,
Springer
, pp.
87
114
.
27.
Li
,
Y.
,
Chai
,
P.
,
Wang
,
Y
, and
Cheng
,
Z.
,
2021
, “
Assessment of Chemical Fiber Air Filter for General Ventilation
,”
Atmosphere
,
12
(
12
), p.
1636
.
28.
Dziubak
,
T.
,
2021
, “
Experimental Studies of Dust Suction Irregularity From Multi-cyclone Dust Collector of Two-Stage Air Filter
,”
Energies
,
14
(
12
), p.
3577
.
29.
Aguilar-Sanchez
,
A.
,
Jalvo
,
B.
,
Mautner
,
A.
,
Rissanen
,
V.
,
Kontturi
,
K. S.
,
Abdelhamid
,
H. N
,
Tammelin
,
T.
, and
Mathew
,
A. P.
,
2021
, “
Charged Ultrafiltration Membranes Based on TEMPO-Oxidized Cellulose Nanofibrils/Poly (Vinyl Alcohol) Antifouling Coating
,”
RSC Adv.
,
11
(
12
), pp.
6859
6868
.
30.
Al-Azba
,
M.
,
2020
, “
Development of a Holistic Engineering Approach for Improved AC Performance and Energy Efficiency in Buildings Under Harsh Desert Climate Conditions
,”
Université de Strasbourg
,
Strasbourg, France
.
31.
Lindsley
,
W.
,
2016
, “
Filter Pore Size and Aerosol Sample Collection
,”
NIOSH Manual of Analytical Methods
, p.
14
.
32.
ASHRAE
,
2017
, “Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size (Standard No. 52.2),” American Society of Heating, Refrigerating, and Air-Conditioning Engineers.
33.
Mandal
,
D.
,
Roy
,
V. P
,
Chatterjee
,
A.
, and
Bhattacharjee
,
A. K.
,
2014
, “
Side Lobe Reduction of Concentric Thinned Antenna Array Using Evolutionary Algorithms
,”
IOSR J. Electr. Electron. Eng.
,
9
(
3
), pp.
43
49
.
You do not currently have access to this content.