Internal Y-shaped bifurcation has been proved to be an advantageous way on improving thermal performance of microchannel heat sinks according to the previous research. Metal foams are known due to their predominate performance such as low-density, large surface area, and high thermal conductivity. In this paper, different parameters of metal foams in Y-shaped bifurcation microchannel heat sinks are designed and investigated numerically. The effects of Reynolds number, porosity of metal foam, and the pore density (PPI) of the metal foam on the microchannel heat sinks are analyzed in detail. It is found that the internal Y-shaped bifurcation microchannel heat sinks with metal foam exhibit better heat transfer enhancement and overall thermal performance. This research provides broad application prospects for heat sinks with metal foam in the thermal management of high power density electronic devices.

References

1.
Mahajan
,
R.
,
Nair
,
R.
, and
Wakharkar
,
V.
,
2002
, “
Emerging Directions for Packaging Technologies
,”
Intel Technol. J.
,
6
, pp.
104
112
.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.5609
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
4.
Xie
,
G. N.
,
Liu
,
Y. Q.
,
Sunden
,
B.
, and
Zhang
,
W. H.
,
2013
, “
Computational Study and Optimization of Laminar Heat Transfer and Pressure Loss of Double-Layer Microchannels for Chip Liquid Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011004
.
5.
Ansari
,
D.
, and
Kim
,
K. Y.
,
2001
, “
Double-Layer Microchannel Heat Sinks With Transverse-Flow Configurations
,”
ASME J. Electron. Packag.
,
138
(3), p.
031005
.
6.
Dominic
,
A.
,
Sarangan
,
J.
,
Suresh
,
S.
, and
Devah Dhanush
,
V. S.
,
2015
, “
An Experimental Investigation of Wavy and Straight Minichannel Heat Sinks Using Water and Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p.
031012
.
7.
Xie
,
G. N.
,
Zhang
,
F. L.
,
Sundén
,
B.
, and
Zhang
,
W. H.
,
2014
, “
Constructal Design and Thermal Analysis of Microchannel Heat Sinks With Multistage Bifurcation in Single-Phase Liquid Flow
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
791
802
.
8.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2007
, “
Numerical Analysis of Heat Removal Enhancement With Extended Surfaces
,”
Int. J. Heat Mass Transfer
,
50
, pp.
746
755
.
9.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Constructal Design of T-Y Assembly of Fins for an Optimized Heat Removal
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1458
1463
.
10.
Li
,
Y. L.
,
Zhang
,
F. L.
,
Xie
,
G. N.
, and
Sundén
,
B.
,
2014
, “
Laminar Thermal Performance of Microchannel Heat Sinks With Constructal Vertical Y-Shaped Bifurcation Plates
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
185
195
.
11.
Lorenzini
,
G.
,
Biserni
,
C.
,
Isoldi
,
L. A.
, and
Rocha
,
L. A. O.
,
2011
, “
Constructal Design Applied to the Geometric Optimization of Y-Shaped Cavities Embedded in a Conducting Medium
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041008
.
12.
Lorenzini
,
G.
,
Biserni
,
C.
,
Estrada
,
E. D.
,
Isodi
,
L. A.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071702
.
13.
Hunt
,
M. L.
, and
Tien
,
C. L.
,
1988
, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
301
309
.
14.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenblit
,
R.
,
2005
, “
Sintered Porous Medium Heat Sink for Cooling of High-Power Mini-Devices
,”
Int. J. Heat Mass Transfer
,
27
(2), pp.
259
266
.
15.
Ejlali
,
A.
, and
Hooman
,
K.
,
2009
, “
Application of High Porosity Metal Foams as Air-Cooled Heat Exchangers to High Heat Load Removal Systems
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
674
679
.
16.
Huang
,
P. C.
, and
Vafai
,
K.
,
1994
, “
Analysis of Forced Convection Enhancement in a Parallel Plate Using Porous Blocks
,”
AIAA J. Thermophys. Heat Transfer
,
8
(
3
), pp.
563
573
.
17.
Angirasa
,
D.
,
2002
, “
Forced Convective Heat Transfer in Metallic Fibrous Materials
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
739
745
.
18.
Huang
,
P. C.
,
Yang
,
C. F.
,
Hwang
,
J. J.
, and
Chiu
,
M. T.
,
2005
, “
Enhancement of Forced-Convection Cooling of Multiple Heated Blocks in a Channel Using Porous Covers
,”
Int. J. Heat Mass Transfer
,
48
, pp.
647
664
.
19.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.
20.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
21.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.
22.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2002
, “
Sintered Porous Heat Sink for Cooling of High-Powered Microprocessors for Server Applications
,”
Int. J. Heat Mass Transfer
,
52
(9–10), pp.
2289
2299
.
23.
Chein
,
R.
,
Yang
,
H.
, and
Tsai
,
T. H.
,
2010
, “
Experimental Study of Heat Sink Performance Using Copper Foams Fabricated by Electroforming
,”
Microsyst. Technol.
,
16
(
7
), pp.
1157
1164
.
24.
Chen
,
C. C.
,
Huang
,
P. C.
, and
Hwang
,
H. Y.
,
2013
, “
Enhanced Forced Convective Cooling of Heat Sources by Metal-Foam Porous Layers
,”
Int. J. Heat Mass Transfer
,
58
, pp.
356
373
.
25.
Xu
,
H. J.
,
Qu
,
Z. G.
, and
Tao
,
W. Q.
,
2011
, “
Analytical Solution of Forced Convective Heat Transfer in Tubes Partially Filled With Metallic Foam Using the Two-Equation Model
,”
Int. J. Heat Mass Transfer
,
54
(17–18), pp.
3846
3855
.
26.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.
27.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.
28.
Koch
,
D. L.
, and
Brady
,
J. F.
,
1986
, “
The Effective Diffusivity of Fibrous Media
,”
AIChE J.
,
32
(
4
), pp.
575
591
.
29.
Zhukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Cross Flow
,”
Advances in Heat Transfer
, Vol.
8
,
J. P.
Hartnett
and
T. F.
Irvine
, Jr.
, eds.,
Academic Press
,
New York
.
30.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Metal Foams
,” Ph.D. thesis, University of Colorado, Boulder, CO.
31.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
32.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
33.
Azzi
,
W. E.
,
2004
, “
A Systematic Study on the Mechanical and Thermal Properties of Open Cell Metal Foams for Aerospace Applications
,”
Master thesis
, North Carolina State University, Raleigh, NC.https://repository.lib.ncsu.edu/handle/1840.16/2922
You do not currently have access to this content.