In the present framework, a model is constituted to explore the peristalsis of magnetohydrodynamics (MHD) viscoelastic (second grade) fluid with wall properties. The study is beneficial in understanding blood flow dynamics through microchannels. The mechanisms of heat and mass transfer are also modeled in the existence of viscous dissipation and Soret effects. The conducting second grade fluid is permeated by a vertical magnetic field. Perturbation technique is opted to present series solutions by assuming that the wavelength of the sinusoidal wave is small in comparison to the half-width of the channel. The solution profiles are computed and elucidated for a certain range of embedded parameters. Moreover, plots of heat transfer coefficient against the axial coordinate are also portrayed and deliberated. The main outcome of the current research is that both viscoelasticity and slip effect considerably alter the flow fields. Moreover, an increasing trend in solute concentration is anticipated for increasing the Soret effect strength.

References

1.
Hayat
,
T.
,
Khan
,
M.
,
Siddiqui
,
A. M.
, and
Asghar
,
S.
,
2007
, “
Non-Linear Peristaltic Flow of a Non-Newtonian Fluid Under Effect of a Magnetic Field in a Planar Channel
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
6
), pp.
910
919
.
2.
Kothandapani
,
M.
, and
Srinivas
,
S.
,
2008
, “
Non-Linear Peristaltic Transport of a Newtonian Fluid in an Inclined Asymmetric Channel Through a Porous Medium
,”
Phys. Lett. A
,
372
(
8
), pp.
1265
1276
.
3.
Mekheimer
,
K. S.
, and
Abd elmaboud
,
Y.
,
2008
, “
Peristaltic Flow of a Couple Stress Fluid in an Annulus: Application of an Endoscope
,”
Physica A
,
387
(
11
), pp.
2403
2415
.
4.
Hayat
,
T.
,
Hina
,
S.
, and
Hendi
,
A. A.
,
2011
, “
Influence of Wall Properties on Peristaltic Transport of Second Grade Fluid With Heat and Mass Transfer
,”
Heat Transfer-Asian Res.
,
40
(
7
), pp.
577
592
.
5.
Tripathi
,
D.
, and
Bég
,
O. A.
,
2013
, “
Transient Magneto-Peristaltic Flow of Couple Stress Biofluids: A Magneto-Hydro-Dynamical Study on Digestive Transport Phenomena
,”
Math. Biosci.
,
246
(
1
), pp.
72
83
.
6.
Tripathi
,
D.
, and
Bég
,
O. A.
,
2014
, “
Peristaltic Propulsion of Generalized Burgers' Fluids Through a Non-Uniform Porous Medium: A Study of Chyme Dynamics Through the Diseased Intestine
,”
Math. Biosci.
,
248
, pp.
67
77
.
7.
Ramesh
,
K.
,
2016
, “
Influence of Heat and Mass Transfer on Peristaltic Flow of a Couple Stress Fluid Through Porous Medium in the Presence of Inclined Magnetic Field in an Inclined Asymmetric Channel
,”
J. Mol. Liq.
,
219
, pp.
256
271
.
8.
Abd-Alla
,
A. M.
,
Abo-Dahab
,
S. M.
, and
Kilicman
,
A.
,
2015
, “
Peristaltic Flow of a Jeffrey Fluid Under the Effect of Radially Varying Magnetic Field in a Tube With an Endoscope
,”
J. Magn. Magn. Mater.
,
384
, pp.
79
86
.
9.
Ellahi
,
R.
, and
Hussain
,
F.
,
2015
, “
Simultaneous Effects of MHD and Partial Slip on Peristaltic Flow of Jeffrey Fluid in a Rectangular Duct
,”
J. Magn. Magn. Mater.
,
393
, pp.
284
292
.
10.
Abbasi
,
F. M.
,
Hayat
,
T.
,
Ahmad
,
B.
, and
Chen
,
G. Q.
,
2014
, “
Peristaltic Motion of Non-Newtonian Nanofluid in an Asymmetric Channel
,”
Z. Naturforsch. A
,
69
, pp.
451
461
.http://adsabs.harvard.edu/abs/2014ZNatA..69..451A
11.
Elmaboud
,
Y. A.
,
Mekheimer
,
K. S.
, and
Mohamed
,
M. S.
,
2015
, “
Series Solution of a Natural Convection Flow for a Carreau Fluid in a Vertical Channel With Peristalsis
,”
J. Hydrodyn., Ser. B
,
27
(6), pp.
969
979
.
12.
Hina
,
S.
,
Mustafa
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2016
, “
Peristaltic Transport of Powell–Eyring Fluid in a Curved Channel With Heat/Mass Transfer and Wall Properties
,”
Int. J. Heat Mass Transfer
,
101
, pp.
156
165
.
13.
Abou-zeid
,
M.
,
2016
, “
Effects of Thermal-Diffusion and Viscous Dissipation on Peristaltic Flow of Micropolar Non-Newtonian Nanofluid: Application of Homotopy Perturbation Method
,”
Results Phys.
,
6
, pp.
481
495
.
14.
Mekheimer
,
K. S.
, and
Al-Arabi
,
T. H.
,
2003
, “
Nonlinear Peristaltic Transport of MHD Flow Through a Porous Medium
,”
Inter. Math. Sci.
,
2003
(
26
), pp.
1663
1682
.
15.
Eldabe
,
N. T. M.
,
El-Sayed
,
M. F.
,
Ghaly
,
A. Y.
, and
Sayed
,
H. M.
,
2007
, “
Peristaltically Induced Transport of a MHD Biviscosity Fluid in a Non-Uniform Tube
,”
Physica A
,
383
(
2
), pp.
253
266
.
16.
Kothandapani
,
M.
, and
Srinivas
,
S.
,
2008
, “
On the Influence of Wall Properties in the MHD Peristaltic Transport With Heat Transfer and Porous Medium
,”
Phys. Lett. A
,
372
(
25
), pp.
4586
4591
.
17.
Srinivas
,
S.
, and
Kothandapani
,
M.
,
2009
, “
The Influence of Heat and Mass Transfer on MHD Peristaltic Flow Through a Porous Space With Compliant Walls
,”
Appl. Math. Comput.
,
213
(
1
), pp.
197
208
.
18.
Hayat
,
T.
,
Qureshi
,
M. U.
, and
Hussain
,
Q.
,
2009
, “
Effect of Heat Transfer on the Peristaltic Flow of an Electrically Conducting Fluid in a Porous Space
,”
Appl. Math. Model.
,
33
(
4
), pp.
1862
1873
.
19.
Hayat
,
T.
,
Tanveer
,
A.
, and
Alsaedi
,
A.
,
2016
, “
Numerical Analysis of Partial Slip on Peristalsis of MHD Jeffery Nanofluid in Curved Channel With Porous Space
,”
J. Mol. Liq.
,
224
, pp.
944
953
.
20.
Ramesh
,
K.
, and
Devakar
,
M.
,
2017
, “
Effect of Heat Transfer on the Peristaltic Transport of a MHD Second Grade Fluid Through a Porous Medium in an Inclined Asymmetric Channel
,”
Chin. J. Phys.
,
55
(3), pp. 825–844.
21.
Ali
,
N.
,
Hussain
,
Q.
,
Hayat
,
T.
, and
Asghar
,
S.
,
2008
, “
Slip Effects on the Peristaltic Transport of MHD Fluid With Variable Viscosity
,”
Phys. Lett. A
,
372
(
9
), pp.
1477
1489
.
22.
Srinivas
,
S.
,
Gayathri
,
R.
, and
Kothandapani
,
M.
,
2009
, “
The Influence of Slip Conditions, Wall Properties and Heat Transfer on MHD Peristaltic Transport
,”
Comput. Phys. Commun.
,
180
(
11
), pp.
2115
2122
.
23.
Nadeem
,
S.
, and
Akram
,
S.
,
2010
, “
Heat Transfer in a Peristaltic of MHD Fluid With Partial Slip
,”
Comm. Non-Linear Sci. Numer. Simul.
,
15
(2), pp.
312
321
.
24.
Hayat
,
T.
, and
Hina
,
S.
,
2011
, “
Effects of Heat and Mass Transfer on Peristaltic of Williamson Fluid in a Non-Uniform Channel With Slip Conditions
,”
Int. J. Numer. Methods Fluids
,
67
(
11
), pp.
1590
1604
.
25.
Hina
,
S.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2014
, “
Slip Effects on MHD Peristaltic Motion With Heat and Mass Transfer
,”
Arabian J. Sci. Eng.
,
39
(
2
), pp.
593
603
.
26.
Kamel
,
M. H.
,
Eldesoky
,
I. M.
,
Maher
,
B. M.
, and
Abumandour
,
R. M.
,
2015
, “
Slip Effects on Peristaltic Transport of a Particle-Fluid Suspension in a Planar Channel
,”
Appl. Bionics Biomech.
,
2015
, p.
703574
.
27.
Eldabe
,
N. T. M.
,
Moatimid
,
G. M.
,
Hassan
,
M. A.
, and
Mostapha
,
D. R.
,
2016
, “
Effects of Partial Slip on Peristaltic Flow of a Sisko Fluid With Mild Stenosis Through a Porous Medium
,”
Appl. Math. Inf. Sci.
,
10
(
2
), pp.
673
687
.
28.
Hayat
,
T.
,
Shafique
,
M.
,
Tanveer
,
A.
, and
Alsaedi
,
A.
, 2016, “
Radiative Peristaltic Flow of Jeffrey Nanofluid With Slip Conditions and Joule Heating
,”
PLoS One
,
11
(
2
), p.
e0148002
.
29.
Ramesh
,
K.
,
2016
, “
Effects of Slip and Convective Conditions on the Peristaltic Flow of Couple Stress Fluid in an Asymmetric Channel Through Porous Medium
,”
Comput. Methods Prog. Biomed.
,
135
, pp.
1
14
.
30.
Hayat
,
T.
,
Nawaz
,
S.
,
Alsaedi
,
A.
, and
Rafiq
,
M.
,
2016
, “
Analysis of Entropy Generation in Mixed Convective Peristaltic Flow of Nanofluid
,”
Entropy
,
18
(
10
), p. 355.
31.
Ali
,
N.
,
Javid
,
K.
, and
Sajid
,
M.
,
2016
, “
Simulations of Peristaltic Slip-Flow of Hydromagnetic Bio-Fluid in a Curved Channel
,”
AIP Adv.
,
6
(
2
), p.
025111
.
32.
Hina
,
S.
,
2016
, “
MHD Peristaltic Transport of Eyring–Powell Fluid With Heat/Mass Transfer, Wall Properties and Slip Conditions
,”
J. Magn. Magn. Mater.
,
404
, pp.
148
158
.
33.
Javed
,
M.
,
Hayat
,
T.
,
Mustafa
,
M.
, and
Ahmad
,
B.
,
2016
, “
Velocity and Thermal Slip Effects on Peristaltic Motion of Walters-B Fluid
,”
Int. J. Heat Mass Transfer
,
96
, pp.
210
217
.
34.
Shit
,
G. C.
, and
Ranjit
,
N. K.
,
2016
, “
Role of Slip Velocity on Peristaltic Transport of Couple Stress Fluid Through an Asymmetric Non-Uniform Channel: Application to Digestive System
,”
J. Mol. Liq.
,
221
, pp.
305
315
.
35.
Chamkha
,
A. J.
, and
Aly
,
A. M.
,
2010
, “
MHD Free Convection Flow of a Nanofluid Past a Vertical Plate in the Presence of Heat Generation or Absorption Effects
,”
Chem. Eng. Commun.
,
198
(
3
), pp.
425
441
.
36.
Chamkha
,
A. J.
, and
Nada
,
E. A.
,
2012
, “
Mixed Convection Flow in Single- and Double-Lid Driven Square Cavities Filled With Water-Al2O3 Nanofluid: Effect of Viscosity Models
,”
Eur. J. Mech. B
,
36
, pp.
82
96
.
37.
Sheikholeslami
,
M.
, and
Chamkha
,
A. J.
,
2016
, “
Flow and Convective Heat Transfer of a Ferro-Nanofluid in a Double-Sided Lid-Driven Cavity With a Wavy Wall in the Presence of a Variable Magnetic Field
,”
Numer. Heat Transfer, Part A
,
69
(
10
), pp.
1186
1200
.
38.
Takhar
,
H. S.
,
Chamkha
,
A. J.
, and
Nath
,
G.
,
2001
, “
Unsteady Three-Dimensional MHD-Boundary-Layer Flow Due to the Impulsive Motion of a Stretching Surface
,”
Acta Mech.
,
146
(
1–2
), pp.
59
71
.
39.
Noghrehabadi
,
A.
,
Pourrajab
,
R.
, and
Ghalambaz
,
M.
,
2012
, “
Effect of Partial Slip Boundary Condition on the Flow and Heat Transfer of Nanofluids Past Stretching Sheet Prescribed Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
54
, pp.
253
261
.
40.
Noghrehabadi
,
A.
,
Ghalambaz
,
M.
, and
Ghanbarzadeh
,
A.
,
2014
, “
Effects of Variable Viscosity and Thermal Conductivity on Natural Convection of Nanofluids Past a Vertical Plate in Porous Media
,”
J. Mech.
,
30
(
3
), pp.
265
275
.
41.
Noghrehabadi
,
A.
,
Ghalambaz
,
M.
,
Ghalambaz
,
M.
, and
Ghanbarzadeh
,
A.
,
2012
, “
Comparing Thermal Enhancement of Ag-Water and SiO2-Water Nanofluids Over an Isothermal Stretching Sheet With Suction or Injection
,”
J. Comput. Appl. Res. Mech. Eng.
,
2
(1), pp.
37
49
.
42.
Ghalambaz
,
M.
,
Sheremet
,
M. A.
, and
Pop
,
I.
,
2015
, “
Free Convection in a Parallelogrammic Porous Cavity Filled With a Nanofluid Using Tiwari and Das' Nanofluid Model
,”
PLoS One
,
10
(
5
), p.
e0126486
.
43.
Basak
,
T.
, and
Chamkha
,
A. J.
,
2012
, “
Heatline Analysis on Natural Convection for Nanofluids Confined Within Square Cavities With Various Thermal Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5526
5543
.
44.
Umavathi
,
J. C.
,
Kumar
,
J. P.
, and
Chamkha
,
A. J.
,
2005
, “
Mixed Convection in a Vertical Porous Channel
,”
Transp. Porous Media
,
61
(
3
), pp.
315
335
.
45.
Chamkha
,
A. J.
,
Grosan
,
T.
, and
Pop
,
I.
,
2002
, “
Fully Developed Free Convection of a Micropolar Fluid in a Vertical Channel
,”
Int. Commun. Heat Mass Transfer
,
29
(
8
), pp.
1119
1127
.
46.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
,
Mateen
,
A.
, and
Al-Mudhaf
,
A.
,
2005
, “
Unsteady Two-Fluid Flow and Heat Transfer in a Horizontal Channel
,”
Heat Mass Transfer
,
42
(
2
), pp.
81
90
.
47.
Chamkha
,
A. J.
, 2002, “
On Laminar Hydromagnetic Mixed Convection Flow in a Vertical Channel With Symmetric and Asymmetric Wall Heating Conditions
,”
Int. J. Heat Mass Transf.
,
45
(
12
), pp.
2509
2525
.
48.
Al-Mudhaf
,
A.
, and
Chamkha
,
A. J.
,
2005
, “
Similarity Solutions for MHD Thermosolutal Marangoni Convection Over a Flat Surface in the Presence of Heat Generation or Absorption Effects
,”
Heat Mass Transfer
,
42
(
2
), pp.
112
121
.
49.
Sheikholeslami
,
M.
, and
Chamkha
,
A. J.
,
2016
, “
Electrohydrodynamic Free Convection Heat Transfer of a Nanofluid in a Semi-Annulus Enclosure With a Sinusoidal Wall
,”
Numer. Heat Transfer, Part A
,
69
(
7
), pp.
781
793
.
50.
Ismael
,
M. A.
,
Pop
,
I.
, and
Chamkha
,
A. J.
,
2014
, “
Mixed Convection in a Lid-Driven Square Cavity With Partial Slip
,”
Int. J. Therm. Sci.
,
82
, pp.
47
61
.
51.
Rashad
,
A. M.
,
Ismael
,
M. A.
,
Chamkha
,
A. J.
, and
Mansour
,
M. A.
,
2016
, “
MHD Mixed Convection of Localized Heat Source/Sink in a Nanofluid-Filled Lid-Driven Square Cavity With Partial Slip
,”
J. Taiwan Inst. Chem. Eng.
,
68
, pp.
173
186
.
52.
Magyari
,
E.
, and
Chamkha
,
A. J.
,
2008
, “
Exact Analytical Results for the Thermosolutal MHD Marangoni Boundary Layers
,”
Int. J. Therm. Sci.
,
47
(
7
), pp.
848
857
.
You do not currently have access to this content.