Abstract
This study deals with the heat transfer characteristics of magnetohydrodynamic (MHD) flow of a third-grade fluid through parallel plates, subjected to a uniform wall heat flux, but of different magnitudes. The effect of viscous dissipation has been included for both heating and cooling of the fluid. The least square method (LSM) has been adopted for solving the nonlinear equations. The expressions for the velocity and temperature fields have been derived which, in turn, is utilized to evaluate the Nusselt number. The results indicate an increase in Nusselt number for higher values of the third-grade fluid parameter during heating and indicate a reverse trend for cooling. Nusselt number increases with an increase in Hartmann number during heating, whereas it decreases with increasing values of the Hartmann number while cooling the fluid.