This paper presents an investigation of a three-phase oscillating heat pipe (3P OHP). The working fluid in the OHP consists of phase change material (PCM) and water. During the operation, the PCM changes the phase between solid and liquid, and water changes phase between liquid and vapor. The OHP investigated herein contains three phases: solid, liquid, and vapor. Erythritol was selected as the PCM with an instant cooling effect when dissolved in water due to the high fusion heat of 340 J/g. When the working fluid flows into the evaporator section, the PCM solid phase of the working fluid can become liquid phase in the evaporator, and the PCM liquid phase of the working fluid become solid phase in the condenser. The effects of heat input ranging from 100 to 420 W, and the erythritol concentration ranging from 1 to 50 wt % on the slug oscillations, and the OHP thermal performance was investigated. Experimental results show that while the erythritol can help to increase the heat transfer performance of an OHP, the heat transfer performance depends on the erythritol concentration. With a range of 1–5 wt % concentration of erythritol/water mixtures, a maximum 10% increase in the thermal performance was observed. When the erythritol concentration of erythritol/water mixtures was increased to a range of 10–50 wt %, the thermal performance of OHPs was lower than pure water-filled OHP, and the thermal performance decreased as the erythritol concentration was further increased. In addition, visualization results showed that slug oscillation amplitudes and velocities were reduced in the OHPs with erythritol solution compared with water-filled OHP.

References

1.
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
A Mathematical Model of an Oscillating Heat Pipe
,”
Heat Transfer Eng.
,
32
(
11–12
), pp.
1037
1046
.
2.
Ma
,
H. B.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
3.
Khandekar
,
S.
,
Dollinger
,
N.
, and
Groll
,
M.
,
2003
, “
Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes: An Experimental Study
,”
Appl. Therm. Eng.
,
23
, pp.
707
719
.
4.
Liu
,
X.
,
Chen
,
Y.
, and
Shi
,
M.
,
2013
, “
Dynamic Performance Analysis on Start-up of Closed-Loop Pulsating Heat Pipes (CLPHPs)
,”
Int. J. Therm. Sci.
,
65
, pp.
224
233
.
5.
Patel
,
V. M.
,
Gaurav
, and
Mehta
,
H. B.
,
2017
, “
Influence of Working Fluids on Startup Mechanism and Thermal Performance of a Closed Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
110
, pp.
1568
1577
.
6.
Wang
,
X.
,
Han
,
T.
,
Wang
,
L.
,
Mao
,
X. X.
, and
Yang
,
C. S.
,
2012
, “
Experimental Study on Start-up Characteristics of Pulsating Heat Pipe
,”
Adv. Mater. Sci.
,
354–355
, pp.
87
91
.
7.
Wilson
,
C.
,
Borgmeyer
,
B.
,
Winholtz
,
R. A.
,
Ma
,
H. B.
,
Jacobson
,
D.
, and
Hussey
,
D.
,
2011
, “
Thermal and Visual Observation of Water and Acetone Oscillating Heat Pipes
,”
ASME J. Heat Transfer
,
133
, p.
061502
.
8.
Thompson
,
S. M.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3951
3959
.
9.
Shi
,
S.
,
Cui
,
X.
,
Han
,
H.
,
Weng
,
J.
, and
Li
,
Z.
,
2016
, “
A Study of the Heat Transfer Performance of a Pulsating Heat Pipe With Ethanol-Based Mixtures
,”
Appl. Therm. Eng.
,
102
, pp.
1219
1227
.
10.
Zhu
,
Y.
,
Cui
,
X.
,
Han
,
H.
, and
Sun
,
S.
,
2014
, “
The Study on the Difference of the Start-up and Heat-Transfer Performance of the Pulsating Heat Pipe With Water-Acetone Mixtures
,”
Int. J. Heat Mass Transfer
,
77
, pp.
834
842
.
11.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
J. Heat Transfer
,
128
, pp.
1213
1216
.
12.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
, and
Yu
,
Q.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
, pp.
1161
1163
.
13.
Ji
,
Y. L.
,
Ma
,
H. B.
,
Su
,
F. M.
, and
Wang
,
G. Y.
,
2011
, “
Particle Size Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Exp. Therm Fluid Sci.
,
35
(
4
), pp.
724
727
.
14.
Zhou
,
Y.
,
Cui
,
X.
,
Weng
,
J.
,
Shi
,
S.
,
Han
,
H.
, and
Chen
,
C.
,
2018
, “
Experimental Investigation of the Heat Transfer Performance of an Oscillating Heat Pipe With Graphene Nanofluids
,”
Powder Technol.
,
332
, pp.
371
380
.
15.
Malvandi
,
A.
,
Safaei
,
M. R.
,
Kaffash
,
M. H.
, and
Ganji
,
D. D.
,
2015
, “
MHD Mixed Convection in a Vertical Annulus Filled With Al2O3–Water Nanofluid Considering Nanoparticle Migration
,”
J. Magn. Magn. Mater.
,
382
, pp.
296
306
.
16.
Alawi
,
O. A.
,
Sidik
,
N. A. C.
,
Mohammed
,
H. A.
, and
Syahrullail
,
S.
,
2014
, “
Fluid Flow and Heat Transfer Characteristics of Nanofluids in Heat Pipes: A Review
,”
Int. Commun. Heat Mass.
,
56
, pp.
50
62
.
17.
Liang
,
Q.
,
Hao
,
T.
,
Wang
,
K.
,
Ma
,
X.
,
Lan
,
Z.
, and
Wang
,
Y.
,
2018
, “
Startup and Transport Characteristics of Oscillating Heat Pipe Using Ionic Liquids
,”
Int. Commun. Heat Mass.
,
94
, pp.
1
13
.
18.
Wang
,
X. H.
,
Zheng
,
H. C.
,
Si
,
M. Q.
,
Han
,
X. H.
, and
Chen
,
G. M.
,
2015
, “
Experimental Investigation of the Influence of Surfactant on the Heat Transfer Performance of Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
83
, pp.
586
590
.
19.
Naghavi
,
M. S.
,
Ong
,
K. S.
,
Badruddin
,
I. A.
,
Mehrali
,
M.
,
Silakhori
,
M.
, and
Metselaar
,
H. S. C.
,
2015
, “
Theoretical Model of an Evacuated Tube Heat Pipe Solar Collector Integrated With Phase Change Material
,”
Energy
,
91
, pp.
911
924
.
20.
Naghavi
,
M. S.
,
Ong
,
K. S.
,
Mehrali
,
M.
,
Badruddin
,
I. A.
, and
Metselaar
,
H. S. C.
,
2015
, “
A State-of-the-Art Review on Hybrid Heat Pipe Latent Heat Storage Systems
,”
Energ. Convers Manage.
,
105
, pp.
1178
1204
.
21.
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Enhancement of Latent Heat Energy Storage Using Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3476
3484
.
22.
Wu
,
W.
,
Yang
,
X.
,
Zhang
,
G.
,
Chen
,
K.
, and
Wang
,
S.
,
2017
, “
Experimental Investigation on the Thermal Performance of Heat Pipe-Assisted Phase Change Material Based Battery Thermal Management System
,”
Energ. Convers. Manage.
,
138
, pp.
486
492
.
23.
Wang
,
Q.
,
Rao
,
Z.
,
Huo
,
Y.
, and
Wang
,
S.
,
2016
, “
Thermal Performance of Phase Change Material/Oscillating Heat Pipe-Based Battery Thermal Management System
,”
Int. J. Therm. Sci.
,
102
, pp.
9
16
.
24.
Zhao
,
J.
,
Rao
,
Z.
,
Liu
,
C.
, and
Li
,
Y.
,
2016
, “
Experimental Investigation on Thermal Performance of Phase Change Material Coupled With Closed-Loop Oscillating Heat Pipe (PCM/CLOHP) Used in Thermal Management
,”
Appl. Therm. Eng.
,
93
, pp.
90
100
.
25.
Zhong
,
L.
,
Zhang
,
X.
,
Luan
,
Y.
,
Wang
,
G.
,
Feng
,
Y.
, and
Feng
,
D.
,
2014
, “
Preparation and Thermal Properties of Porous Heterogeneous Composite Phase Change Materials Based on Molten Salts/Expanded Graphite
,”
Sol. Energy
,
107
, pp.
63
73
.
26.
Li
,
Z.
,
Sun
,
W. G.
,
Wang
,
G.
, and
Wu
,
Z. G.
,
2014
, “
Experimental and Numerical Study on the Effective Thermal Conductivity of Paraffin/Expanded Graphite Composite
,”
Sol. Energ. Mat. Sol. C
,
128
, pp.
447
455
.
27.
Kibria
,
M. A.
,
Anisur
,
M. R.
,
Mahfuz
,
M. H.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2015
, “
A Review on Thermophysical Properties of Nanoparticle Dispersed Phase Change Materials
,”
Energ. Convers. Manage.
,
95
, pp.
69
89
.
28.
Hossain
,
R.
,
Mahmud
,
S.
,
Dutta
,
A.
, and
Pop
,
I.
,
2015
, “
Energy Storage System Based on Nanoparticle-Enhanced Phase Change Material Inside Porous Medium
,”
Int. J. Therm. Sci.
,
91
, pp.
49
58
.
29.
del Barrio
,
E. P.
,
Godin
,
A.
,
Duquesne
,
M.
,
Daranlot
,
J.
,
Jolly
,
J.
,
Alshaer
,
W.
,
Kouadio
,
T.
, and
Sommier
,
A.
,
2017
, “
Characterization of Different Sugar Alcohols as Phase Change Materials for Thermal Energy Storage Applications
,”
Sol. Energ. Mat. Sol. C
,
159
, pp.
560
569
.
30.
Del Barrio
,
E. P.
,
Cadoret
,
R.
,
Daranlot
,
J.
, and
and Achchaq
,
F.
,
2016
, “
New Sugar Alcohols Mixtures for Long-Term Thermal Energy Storage Applications at Temperatures Between 70 °C and 100 °C
,”
Sol. Energ. Mat. Sol. C
,
155
, pp.
454
468
.
31.
Zhang
,
X.
,
Chen
,
X.
,
Han
,
Z.
, and
Xu
,
W.
,
2016
, “
Study on Phase Change Interface for Erythritol With Nano-Copper in Spherical Container During Heat Transport
,”
Int. J. Heat Mass Transfer
,
92
, pp.
490
496
.
32.
Tomaszewska
,
L.
,
Rywińska
,
A.
, and
Rymowicz
,
W.
,
2014
, “
High Selectivity of Erythritol Production From Glycerol by Yarrowia Lipolytica
,”
Biomass. Bioenerg.
,
64
, pp.
309
320
.
33.
Oya
,
T.
,
Nomura
,
T.
,
Tsubota
,
M.
,
Okinaka
,
N.
, and
Akiyama
,
T.
,
2013
, “
Thermal Conductivity Enhancement of Erythritol as PCM by Using Graphite and Nickel Particles
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
825
828
.
34.
Arulmurugan
,
L.
, and
Ilangkumaran
,
M.
,
2017
, “
Enhancement of Heat Transfer Using Phase Change Material With Water Mixture
,” ,
13
(
6
), pp.
299
305
.
35.
O’Brien-Nabors
,
L.
,
2011
,
Alternative Sweeteners
,
CRC Press
,
Boca Raton
.
36.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes: Modeling, Testing, and Applications
,
Wiley-Interscience
,
Hoboken
.
37.
Cooke
,
S. A.
,
Jónsdóttir
,
, and
Westh
,
P.
,
2002
, “
The Vapour Pressure of Water as a Function of Solute Concentration Above Aqueous Solutions of Fructose, Sucrose, Raffinose, Erythritol, Xylitol, and Sorbitol
,”
J. Chem. Thermodyn.
,
34
(
10
), pp.
1545
1555
.
38.
Rowe
,
R. C.
,
Sheskey
,
P. J.
, and
Quinn
,
M. E.
,
2009
,
Handbook of Pharmaceutical Excipients
,
Pharmaceutical Press
,
London
.
39.
Hao
,
H. X.
,
Hou
,
B. H.
,
Wang
,
J. K.
, and
Zhang
,
M. J.
,
2005
, “
Solubility of Erythritol in Different Solvents
,”
J. Chem. Eng. Data
,
50
(
4
), pp.
1454
1456
.
40.
Grenby
,
T. H.
,
1996
,
Advances in Sweeteners
,
Springer
,
New York
.
41.
Cruz
,
P.
,
Rocha
,
F.
, and
Ferreira
,
A.
,
2018
, “
Determination of the Critical Mixing Intensity for Secondary Nucleation of Paracetamol in an Oscillatory Flow Crystallizer
,”
Cryst. Eng. Comm.
,
20
(
6
), pp.
829
836
.
42.
Peña
,
R.
,
Oliva
,
J. A.
,
Burcham
,
C. L.
,
Jarmer
,
D. J.
, and
Nagy
,
Z. K.
,
2017
, “
Process Intensification Through Continuous Spherical Crystallization Using an Oscillatory Flow Baffled Crystallizer
,”
Cryst. Growth Des.
,
17
(
9
), pp.
4776
4784
.
You do not currently have access to this content.