Abstract

Array-jet impingement is typically used in gas turbine blade near-wall cooling, where high rates of heat dissipation is required. The accumulated crossflow mass flux results in significant reduction in jet effectiveness in the downstream rows, leading to reduced cooling performance. In this paper, a jet impingement system equipped with U-shaped ribs (hereafter referred as “diverter”) was used for diverting the crossflow away from the jets emanating from the nozzle plate. To this end, a baseline configuration of array-jet impingement onto smooth target surface is considered, where the normalized jet-to-jet spacing (x/dj = y/dj) was 6 and the normalized jet-to-target spacing (z/dj) was 2. Crossflow diverters with thickness t of 1.5875 mm and height h of 2dj (= z) were installed at a distance of 2dj from the respective jet centers. Detailed heat transfer coefficients have been calculated through transient liquid crystal experiments carried out over Reynolds numbers ranging from 3500 to 12,000. It has been observed that crossflow diverters protect the downstream jets from upstream jet deflection, thereby maximizing their stagnation cooling potential. An average of 15–30% enhancement in Nusselt number is obtained over the flow range tested. This benefit in heat transfer came at a cost of increased pumping power to maintain similar flow rate in the system. At a given pumping power, crossflow diverters yielded an enhancement of 9–15% in heat transfer compared with the baseline case.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Andreini
,
A.
,
Cocchi
,
L.
,
Facchini
,
B.
,
Mazzei
,
L.
, and
Picchi
,
A.
,
2018
, “
Experimental and Numerical Investigation on the Role of Holes Arrangement on the Heat Transfer in Impingement/Effusion Cooling Schemes
,”
Int. J. Heat Mass Transfer
,
127
, pp.
645
659
. 10.1016/j.ijheatmasstransfer.2018.06.102
3.
Nejat
,
A.
,
Aslani
,
M.
,
Mirzakhalili
,
E.
, and
Asl
,
R. N.
,
2011
, “
Heat Transfer Enhancement in Ventilated Brake Disk Using Double Airfoil Vanes
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
045001
. 10.1115/1.4004931
4.
Mehdi
,
J. K.
,
Nejat
,
A.
, and
Panahi
,
M. S.
,
2018
, “
Heat Transfer Improvement in Automotive Brake Disks via Shape Optimization of Cooling Vanes Using Improved TPSO Algorithm Coupled With Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011013
. 10.1115/1.4036966
5.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1377
1382
. 10.1016/0017-9310(82)90131-4
6.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelmann
,
K. K.
,
1986
, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1227
1235
. 10.1016/0017-9310(86)90155-9
7.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
. 10.1016/0894-1777(93)90022-B
8.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
. 10.1016/S0065-2717(06)39006-5
9.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
J. Eng. Power
,
92
(
1
), pp.
73
82
. 10.1115/1.3445306
10.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
. 10.1115/1.3248197
11.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME 1981 International Gas Turbine Conference and Products Show
,
American Society of Mechanical Engineers
, pp.
V003T09A005
V003T09A005
.
12.
Li
,
W.
,
Li
,
X.
,
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2017
, “
Effect of Reynolds Number, Hole Patterns, and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
4
), p.
041002
. 10.1115/1.4035045
13.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2017
, “
Effects of Spent Air Removal Scheme on Internal-Side Heat Transfer in an Impingement-Effusion System at Low Jet-to-Target Plate Spacing
,”
Int. J. Heat Mass Transfer
,
108
, pp.
998
1010
. 10.1016/j.ijheatmasstransfer.2016.12.104
14.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
. 10.2514/2.6304
15.
Ekkad
,
S. V.
,
Huang
,
Y.
, and
Han
,
J. C.
,
1999
, “
Impingement Heat Transfer on a Target Plate With Film Cooling Holes
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
522
528
. 10.2514/2.6471
16.
Neil Jordan
,
C.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2016
, “
Impingement Heat Transfer on a Cylindrical, Concave Surface With Varying Jet Geometries
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122002
. 10.1115/1.4034180
17.
Wright
,
L.
,
Wang
,
N.
,
Zhang
,
M.
,
Alsaleem
,
S.
, and
Han
,
J. C.
,
2019
, “
Turbine Blade Leading Edge Impingement Cooling From Normal or Tangential Jets With Crossflow Effect
,”
Front. Heat Mass Transfer
,
13
(
9
).
18.
Ji
,
Y.
,
Singh
,
P.
,
Ekkad
,
S. V.
, and
Zang
,
S.
,
2017
, “
Effect of Crossflow Regulation by Varying jet Diameters in Streamwise Direction on Jet Impingement Heat Transfer Under Maximum Crossflow Condition
,”
Numer. Heat Transfer, Part A
,
72
(
8
), pp.
579
599
. 10.1080/10407782.2017.1394136
19.
Esposito
,
E. I.
,
Ekkad
,
S. V.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2009
, “
Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
2
), p.
021001
. 10.1115/1.3202799
20.
Chi
,
Z.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
. 10.1016/j.ijheatmasstransfer.2013.04.052
21.
Wang
,
L.
,
Sundén
,
B.
,
Borg
,
A.
, and
Abrahamsson
,
H.
,
2011
, “
Control of Jet Impingement Heat Transfer in Crossflow by Using a Rib
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4157
4166
. 10.1016/j.ijheatmasstransfer.2011.06.004
22.
Singh
,
P.
, and
Ekkad
,
S.
,
2017
, “
Experimental Study of Heat Transfer Augmentation in a Two-Pass Channel Featuring V-Shaped Ribs and Cylindrical Dimples
,”
Appl. Therm. Eng.
,
116
, pp.
205
216
. 10.1016/j.applthermaleng.2017.01.098
23.
Singh
,
P.
,
Pandit
,
J.
, and
Ekkad
,
S. V.
,
2017
, “
Characterization of Heat Transfer Enhancement and Frictional Losses in a Two-Pass Square Duct Featuring Unique Combinations of Rib Turbulators and Cylindrical Dimples
,”
Int. J. Heat Mass Transfer
,
106
, pp.
629
647
. 10.1016/j.ijheatmasstransfer.2016.09.037
24.
Singh
,
P.
,
Ravi
,
B. V.
, and
Ekkad
,
S. V.
,
2016
, “
Experimental and Numerical Study of Heat Transfer Due to Developing Flow in a Two-Pass Rib Roughened Square Duct
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1245
1256
. 10.1016/j.ijheatmasstransfer.2016.07.015
25.
Ozmen
,
Y.
, and
Ipek
,
G.
,
2016
, “
Investigation of Flow Structure and Heat Transfer Characteristics in an Array of Impinging Slot Jets
,”
Heat Mass Transfer
,
52
(
4
), pp.
773
787
. 10.1007/s00231-015-1598-z
26.
Miao
,
J. M.
,
Wu
,
C. Y.
, and
Chen
,
P. H.
,
2009
, “
Numerical Investigation of Confined Multiple-Jet Impingement Cooling Over a Flat Plate at Different Crossflow Orientations
,”
Numer. Heat Transfer, Part A
,
55
(
11
), pp.
1019
1050
. 10.1080/10407780903014335
27.
Shi
,
Y.
,
Ray
,
M. B.
, and
Mujumdar
,
A. S.
,
2003
, “
Numerical Study on the Effect of Cross-Flow on Turbulent Flow and Heat Transfer Characteristics Under Normal and Oblique Semi-Confined Impinging Slot Jets
,”
Drying Technol.
,
21
(
10
), pp.
1923
1939
. 10.1081/DRT-120026425
28.
Baydar
,
E.
, and
Ozmen
,
Y.
,
2005
, “
An Experimental and Numerical Investigation on a Confined Impinging Air Jet at High Reynolds Numbers
,”
Appl. Therm. Eng.
,
25
(
2–3
), pp.
409
421
. 10.1016/j.applthermaleng.2004.05.016
29.
Yang
,
Y. T.
, and
Wang
,
Y. X.
,
2005
, “
Three-Dimensional Numerical Simulation of an Inclined Jet With Cross-Flow
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
4019
4027
. 10.1016/j.ijheatmasstransfer.2005.04.018
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
You do not currently have access to this content.