Abstract

A numerical study is conducted concerning the improvement of radial plane fins heat sinks for natural convection cooling of light-emitting diode (LED) lamps. The main objective is to maintain the temperature of the heat sink base below a prescribed threshold for a given released heat flux at the heat sink, minimizing its mass and maintaining at a reasonably simple level the manufacturing processes and operations required for its production. Starting from a previously optimized heat sink for the same purpose, constituted by complete rectangular radial plane fins, the present study aims at further improvements by considering incomplete rectangular radial plane fins. The main objective of this study is to find the best profile for the turning operation to obtain the radial plane fins lighter configuration. It is found that this can be achieved by removing part of the upper internal corners of the rectangular fins, more specifically shaping a curved cut, leading to heat sink mass reduction up to 32.4%. The geometry of the improved heat sink is of cylindrical nature, obtained from cutting an aluminum extruded bar comprising a cylindrical central core and a number of uniformly distributed rectangular radial plane fins, followed by a simple turning operation to remove their upper internal corners. Even if results concern a particular LED lamp, the main ideas and approach prevail to improve other types of heat sinks for general light and/or electronic components cooling.

References

1.
Franz
,
M.
, and
Wenzl
,
F. P.
,
2017
, “
Critical Review on Life Cycle Inventories and Environmental Assessments of LED-Lamps
,”
Crit. Rev. Environ. Sci. Technol.
,
47
(
21
), pp.
2017
2078
. 10.1080/10643389.2017.1370989
2.
How to Improve the Heat Dissipation Level of LED Lamps?
https://www.razorlux.com/how-to-improve-the-heat-dissipation-level-of-led-lamps.html, Accessed Oct. 2019.
3.
Almeida
,
A.
,
Santos
,
B.
,
Paolo
,
B.
, and
Quicheron
,
M.
,
2014
, “
Solid State Lighting Review—Potential and Challenges in Europe
,”
Renew. Sustain. Energy Rev.
,
34
, pp.
30
48
. 10.1016/j.rser.2014.02.029
4.
Costa
,
V. A. F.
, and
Lopes
,
A. M. G.
,
2014
, “
Improved Radial Heat Sink for LED Lamp Cooling
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
131
138
. 10.1016/j.applthermaleng.2014.04.068
5.
Park
,
D. H.
,
Lee
,
D. B.
,
Seo
,
E. R.
, and
Park
,
Y. J.
,
2016
, “
A Parametric Study on Heat Dissipation From a LED-Lamp
,”
Appl. Therm. Eng.
,
108
, pp.
1261
1267
. 10.1016/j.applthermaleng.2016.08.032
6.
Lee
,
G.
, and
Kim
,
S. J.
,
2018
, “
Thermal Optimization of Radial Plate Fin Heat Sinks Under an L-Shaped Flow
,”
Appl. Therm. Eng.
,
133
, pp.
580
587
. 10.1016/j.applthermaleng.2018.01.076
7.
Manna
,
S.
,
Ghosh
,
S. K.
, and
Haldar
,
S. C.
,
2019
, “
Optimum Fin Parameters of Radial Heat Sinks Subjected to Natural Convection
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
5
. 10.1115/1.4043091
8.
Park
,
S. J.
,
Jang
,
D.
,
Yook
,
S. J.
, and
Lee
,
K. S.
,
2015
, “
Optimization of a Staggered Pin-Fin for a Radial Heat Sink Under Free Convection
,”
Int. J. Heat Mass Transfer
,
87
, pp.
184
188
. 10.1016/j.ijheatmasstransfer.2015.03.089
9.
Yang
,
J.
,
Li
,
L.
,
Yang
,
L.
, and
Li
,
J.
,
2017
, “
Uniform Design for the Parameters Optimization of Pin-Fins Channel Heat Sink
,”
Appl. Therm. Eng.
,
120
, pp.
289
297
. 10.1016/j.applthermaleng.2017.03.122
10.
Wen
,
M. Y.
, and
Yeh
,
C. H.
,
2017
, “
Numerical Study of Thermal Performance of Perforated Circular Pin Fin Heat Sinks in Forced Convection
,”
Heat Mass Transfer
,
53
(
6
), pp.
2031
2044
. 10.1007/s00231-016-1960-9
11.
Li
,
B.
,
Baik
,
Y. J.
, and
Byon
,
C.
,
2016
, “
Enhanced Natural Convection Heat Transfer of a Chimney-Based Radial Heat Sink
,”
Energy Convers. Manage.
,
108
, pp.
422
428
. 10.1016/j.enconman.2015.11.037
12.
Park
,
S. J.
, and
Lee
,
K. S.
,
2017
, “
Orientation Effect of a Radial Heat Sink With a Chimney for LED Downlights
,”
Int. J. Heat Mass Transfer
,
110
, pp.
416
421
. 10.1016/j.ijheatmasstransfer.2017.03.062
13.
Li
,
B.
, and
Byon
,
C.
,
2015
, “
Experimental and Numerical Study on the Heat Sink With Radial Fins and a Concentric Ring Subject to Natural Convection
,”
Appl. Therm. Eng.
,
90
, pp.
345
351
. 10.1016/j.applthermaleng.2015.06.083
14.
Schmid
,
G.
,
Valladares-Rendón
,
L. G.
,
Yang
,
T. H.
, and
Chen
,
S. L.
,
2017
, “
Numerical Analysis of the Effect of a Central Cylindrical Opening on the Heat Transfer of Radial Heat Sinks for Different Orientations
,”
Appl. Therm. Eng.
,
125
, pp.
575
583
. 10.1016/j.applthermaleng.2017.07.051
15.
Park
,
S. J.
,
Jang
,
D.
, and
Lee
,
K. S.
,
2015
, “
Thermal Performance Improvement of a Radial Heat Sink With a Hollow Cylinder for LED Downlight Applications
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1184
1189
. 10.1016/j.ijheatmasstransfer.2015.06.037
16.
Park
,
S. J.
,
Jang
,
D.
,
Yok
,
S. J.
, and
Lee
,
K. S.
,
2016
, “
Optimization of a Chimney Design for Cooling Efficiency of a Radial Heat Sink in a LED Downlight
,”
Energy Convers. Manage.
,
114
, pp.
180
187
. 10.1016/j.enconman.2016.02.024
17.
Wang
,
Y.
,
Cen
,
J.
,
Cao
,
W.
, and
Jiang
,
F.
,
2017
, “
Thermal Performance of Direct Illumination High-Power LED Backlight Units With Different Assembling Structures
,”
Heat Mass Transfer
,
53
(
5
), pp.
1619
1630
. 10.1007/s00231-016-1925-z
18.
Jeong
,
M. W.
,
Jeon
,
S. W.
, and
Kim
,
Y.
,
2015
, “
Optimal Thermal Design of a Horizontal Fin Heat Sink With a Modified-Opening Model Mounted on an LED Module
,”
Appl. Therm. Eng.
,
91
, pp.
105
115
. 10.1016/j.applthermaleng.2015.08.001
19.
Kwon
,
H.
,
Joo
,
Y.
, and
Kim
,
S. J.
,
2018
, “
Analytic Approach to Thermal Optimization of Horizontally Oriented Radial Plate-Fin Heat Sinks in Natural Convection
,”
Energy Convers. Manage.
,
156
, pp.
555
567
. 10.1016/j.enconman.2017.11.076
20.
da Silva
,
V. A.
,
de Neves Gomes
,
L. A. C.
,
de Lima e Silva
,
A. L. F.
, and
de Lima e Silva
,
S. M. M.
,
2019
, “
Analysis of Natural Convection in Heat Sink Using OpenFOAM and Experimental Tests
,”
Heat Mass Transfer
,
55
(
8
), pp.
2289
2304
. 10.1007/s00231-019-02574-5
21.
Jeon
,
D.
, and
Byon
,
C.
,
2017
, “
Thermal Performance of Plate Fin Heat Sinks With Dual-Height Fins Subject to Natural Convection
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1086
1092
. 10.1016/j.ijheatmasstransfer.2017.06.031
22.
Shin
,
D. H.
,
Sohn
,
D. K.
, and
Ko
,
H. S.
,
2018
, “
Analysis of Thermal Flow Around Heat Sink With Ionic Wind for High-Power LED
,”
Appl. Therm. Eng.
,
143
, pp.
376
384
. 10.1016/j.applthermaleng.2018.07.118
23.
Tang
,
Y.
,
Lin
,
L.
,
Zhang
,
S.
,
Zeng
,
J.
,
Tang
,
K.
,
Chen
,
G.
, and
Yuan
,
W.
,
2017
, “
Thermal Management of High-Power LEDs Based on Integrated Heat Sink With Vapor Chamber
,”
Energy Convers. Manage.
,
151
, pp.
1
10
. 10.1016/j.enconman.2017.08.087
24.
Xiang
,
J.
,
Zhang
,
C.
,
Zhou
,
C.
,
Huang
,
J.
,
Liu
,
G.
, and
Zhao
,
H.
,
2019
, “
An Integrated Radial Heat Sink With Thermosyphon for High-Power LEDs Applications
,”
Heat and Mass Transfer
,
55
(
8
), pp.
2455
2467
. 10.1007/s00231-019-02597-y
25.
Ying
,
X.
,
Ye
,
F.
,
Liu
,
R.
, and
Bao
,
H.
,
2018
, “
Design and Optimization of Thermoelectric Cooling System Under Natural Convection Condition
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
). 10.1115/1.4039926
26.
Kwak
,
D. B.
,
Noh
,
J. H.
,
Lee
,
K. S.
, and
Yook
,
S. J.
,
2017
, “
Cooling Performance of a Radial Heat Sink With Triangular Fins on a Circular Base at Various Installation Angles
,”
Int. J. Therm. Sci.
,
120
, pp.
377
385
. 10.1016/j.ijthermalsci.2017.06.022
27.
Bejan
,
A.
,
1993
,
Heat Transfer
,
John Wiley and Sons
,
New York
.
28.
Modest
,
M.
,
1993
,
Radiation Heat Transfer
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.