Abstract

Heat transfer and flow characteristics of channel-bounded circular cylinder with a slit vent parallel to the flow direction are numerically investigated using openfoam. The interesting feature of this configuration is the formation of the separation bubble behind the cylinder, which significantly alters the near wake characteristics. In this study, the emphasis is given to understand the effect of the slit on forced convection from the cylinder. Simulations were performed by varying the slit width from 0 to 0.25 (in steps of 0.05) for the range of Reynolds number (Re) 60–240. Re is defined based on the diameter of the cylinder (d) and centerline velocity (Uc) at the inlet of the channel. The influence of s/d and Re on the separation bubble, aerodynamic forces, and heat transfer characteristics are studied in detail. Results demonstrate that the slit can manipulate the flow to mitigate adverse effects of vortex shedding and thus can be used as a passive flow control technique. It was observed that the inclusion of the slit in the cylinder delays the onset of vortex shedding, and it also reduces the fluctuations in aerodynamic forces up to 99%. Compared with the solid cylinder, around 38% increase in vortex shedding frequency, a 16% reduction in drag, and a 10% increase in average Nusselt number is observed when the slit width is 0.25d. It was found that the introduction of slit vent in the cylinder not only enhances the heat transfer along with the reduction in expenditure of pressure loss across the cylinder but also suppresses the fluctuations in aerodynamic forces, which causes vortex-induced vibrations and thus improves structural stability and integrity.

References

1.
Williamson
,
C. H.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
. 10.1146/annurev.fl.28.010196.002401
2.
Karniadakis
,
G. E.
,
1988
, “
Numerical Simulation of Forced Convection Heat Transfer From a Cylinder in Crossflow
,”
Int. J. Heat Mass Transf.
,
31
(
1
), pp.
107
118
. 10.1016/0017-9310(88)90227-X
3.
Lange
,
C. F.
,
Durst
,
F.
, and
Breuer
,
M.
,
1988
, “
Momentum and Heat Transfer From Cylinders in Laminar Crossflow at 10−4≤Re≤200
,”
Int. J. Heat Mass Transf.
,
41
(
22
), pp.
3409
3430
. 10.1016/S0017-9310(98)00077-5
4.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
. 10.1146/annurev.fluid.36.050802.122128
5.
Choi
,
H.
,
Jeon
,
W. P.
, and
Kim
,
J.
,
2008
, “
Control of Flow Over a Bluff Body
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
113
139
. 10.1146/annurev.fluid.39.050905.110149
6.
Bouhairie
,
S.
, and
Chu
,
V. H.
,
2007
, “
Two-Dimensional Simulation of Unsteady Heat Transfer From a Circular Cylinder in Crossflow
,”
J. Fluid Mech.
,
570
, pp.
177
215
. 10.1017/S0022112006002941
7.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhang
,
J.
,
2015
, “
Effects of Reynolds and Prandtl Numbers on Heat Transfer Around a Circular Cylinder by the Simplified Thermal Lattice Boltzmann Model
,”
Commun. Comput. Phys.
,
17
(
4
), pp.
937
959
. 10.4208/cicp.2014.m314
8.
Baranyi
,
L.
,
2003
, “
Computation of Unsteady Momentum and Heat Transfer From a Fixed Circular Cylinder in Laminar Flow
,”
J. Comput. Appl. Mech.
,
4
(
1
), pp.
13
25
.
9.
Baranyi
,
L.
,
Szabó
,
S.
,
Bolló
,
B.
, and
Bordás
,
R.
,
2009
, “
Analysis of Low Reynolds Number Flow Around a Heated Circular Cylinder
,”
J. Mech. Sci. Technol.
,
23
(
7
), pp.
1829
1834
. 10.1007/s12206-009-0610-2
10.
Isaev
,
S. A.
,
Leontiev
,
A. I.
,
Kudryavtsev
,
N. A.
,
Baranova
,
T. A.
, and
Lysenko
,
D. A.
,
2005
, “
Numerical Simulation of Unsteady-State Heat Transfer Under Conditions of Laminar Transverse Flow Past a Circular Cylinder
,”
High Temp.
,
43
(
5
), pp.
746
759
. 10.1007/s10740-005-0119-z
11.
Nakamura
,
H.
, and
Igarashi
,
T.
,
2004
, “
Variation of Nusselt Number With Flow Regimes Behind a Circular Cylinder for Reynolds Numbers From 70 to 30000
,”
Int. J. Heat Mass Transf.
,
47
(
23
), pp.
5169
5173
. 10.1016/j.ijheatmasstransfer.2004.05.034
12.
Biswas
,
G.
, and
Sarkar
,
S.
,
2009
, “
Effect of Thermal Buoyancy on Vortex Shedding Past a Circular Cylinder in Cross-Flow at Low Reynolds Numbers
,”
Int. J. Heat Mass Transf.
,
52
(
7–8
), pp.
1897
1912
. 10.1016/j.ijheatmasstransfer.2008.08.034
13.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
A Numerical Study of the Steady Forced Convection Heat Transfer From an Unconfined Circular Cylinder
,”
Heat Mass Transf.
,
43
(
7
), pp.
639
648
. 10.1007/s00231-006-0155-1
14.
Zovatto
,
L.
, and
Pedrizzetti
,
G.
,
2001
, “
Flow About a Circular Cylinder Between Parallel Walls
,”
J. Fluid Mech.
,
440
, pp.
1
25
. 10.1017/S0022112001004608
15.
Singha
,
S.
, and
Sinhamahapatra
,
K. P.
,
2010
, “
Flow Past a Circular Cylinder Between Parallel Walls at Low Reynolds Numbers
,”
Ocean Eng.
,
37
(
8–9
), pp.
757
769
. 10.1016/j.oceaneng.2010.02.012
16.
Sahin
,
M.
, and
Owens
,
R. G.
,
2004
, “
A Numerical Investigation of Wall Effects up to High Blockage Ratios on Two-Dimensional Flow Past a Confined Circular Cylinder
,”
Phys. Fluids
,
16
(
5
), pp.
1305
1320
. 10.1063/1.1668285
17.
Rehimi
,
F.
,
Aloui
,
F.
,
Nasrallah
,
S. B.
,
Doubliez
,
L.
, and
Legrand
,
J.
,
2008
, “
Experimental Investigation of a Confined Flow Downstream of a Circular Cylinder Centred Between Two Parallel Walls
,”
J. Fluids Struct.
,
24
(
6
), pp.
855
882
. 10.1016/j.jfluidstructs.2007.12.011
18.
Senthil Kumar
,
R.
, and
Jayavel
,
S.
,
2017
, “
Influence of Flow Shedding Frequency on Convection Heat Transfer From Bank of Circular Tubes in Heat Exchangers Under Cross Flow
,”
Int. J. Heat Mass Transf.
,
105
, pp.
376
393
. 10.1016/j.ijheatmasstransfer.2016.09.097
19.
Chakraborty
,
J.
,
Verma
,
N.
, and
Chhabra
,
R. P.
,
2004
, “
Wall Effects in Flow Past a Circular Cylinder in a Plane Channel: A Numerical Study
,”
Chem. Eng. Process. Process Intensif.
,
43
(
12
), pp.
1529
1537
. 10.1016/j.cep.2004.02.004
20.
Buyruk
,
E.
,
Johnson
,
M. W.
, and
Owen
,
I.
,
1998
, “
Numerical and Experimental Study of Flow and Heat Transfer Around a Tube in Cross-Flow at Low Reynolds Number
,”
Int. J. Heat Fluid Flow
,
19
(
3
), pp.
223
232
. 10.1016/S0142-727X(97)10027-3
21.
Feng
,
L. H.
,
Wang
,
J. J.
, and
Pan
,
C.
,
2010
, “
Effect of Novel Synthetic Jet on Wake Vortex Shedding Modes of a Circular Cylinder
,”
J. Fluids Struct.
,
26
(
6
), pp.
900
917
. 10.1016/j.jfluidstructs.2010.05.003
22.
Feng
,
L. H.
,
Wang
,
J. J.
, and
Pan
,
C.
,
2011
, “
Proper Orthogonal Decomposition Analysis of Vortex Dynamics of a Circular Cylinder Under Synthetic Jet Control
,”
Phys. Fluids
,
23
(
014106
), pp.
1
13
.
23.
Feng
,
L. H.
, and
Wang
,
J. J.
,
2010
, “
Circular Cylinder Vortex-Synchronization Control With a Synthetic Jet Positioned at the Rear Stagnation Point
,”
J. Fluid Mech.
,
662
, pp.
232
259
. 10.1017/S0022112010003174
24.
Feng
,
L. H.
, and
Wang
,
J. J.
,
2012
, “
Synthetic Jet Control of Separation in the Flow Over a Circular Cylinder
,”
Exp. Fluids
,
53
(
2
), pp.
467
480
. 10.1007/s00348-012-1302-8
25.
Igarashi
,
T.
,
1978
, “
Flow Characteristics Around a Circular Cylinder With a Slit: 1st Report, Flow Control and Flow Patterns
,”
Bull. JSME
,
21
(
154
), pp.
656
664
. 10.1299/jsme1958.21.656
26.
Igarashi
,
T.
,
1999
, “
Flow Resistance and Strouhal Number of a Vortex Shedder in a Circular Pipe
,”
JSME Int. J. Ser. B.
,
42
(
4
), pp.
586
595
. 10.1299/jsmeb.42.586
27.
Gao
,
D. L.
,
Chen
,
W. L.
,
Li
,
H.
, and
Hu
,
H.
,
2017
, “
Flow Around a Circular Cylinder With Slit
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
287
301
. 10.1016/j.expthermflusci.2016.11.025
28.
Gao
,
D. L.
,
Chen
,
W. L.
,
Li
,
H.
, and
Hu
,
H.
,
2017
, “
Flow Around a Slotted Circular Cylinder at Various Angles of Attack
,”
Exp. Fluids
,
58
(
10
), p.
132
. 10.1007/s00348-017-2417-8
29.
Peng
,
B. H.
,
Miau
,
J. J.
,
Bao
,
F.
,
Weng
,
L. D.
,
Chao
,
C. C.
, and
Hsu
,
C. C.
,
2012
, “
Performance of Vortex Shedding From a Circular Cylinder With a Slit Normal to the Stream
,”
Flow Meas. Instrum.
,
25
, pp.
54
62
. 10.1016/j.flowmeasinst.2011.07.003
30.
Ma
,
H. L.
, and
Kuo
,
C. H.
,
2016
, “
Control of Boundary Layer Flow and Lock-On of Wake Behind a Circular Cylinder With a Normal Slit
,”
Eur. J. Mech.—B/Fluids
,
59
, pp.
99
114
. 10.1016/j.euromechflu.2016.05.001
31.
Olsen
,
J.
, and
Rajagopalan
,
S.
,
2000
, “
Vortex Shedding Behind Modified Circular Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
86
(
1
), pp.
55
63
. 10.1016/S0167-6105(00)00003-9
32.
Baek
,
H.
, and
Karniadakis
,
G. E.
,
2009
, “
Suppressing Vortex-Induced Vibrations Via Passive Means
,”
J. Fluids Struct.
,
25
(
5
), pp.
848
866
. 10.1016/j.jfluidstructs.2009.02.006
33.
Bao
,
Z.
,
Qin
,
G.
,
He
,
W.
, and
Wang
,
Y.
,
2018
, “
Numerical Investigation of Flow Around a Slotted Circular Cylinder at Low Reynolds Number
,”
J. Wind Eng. Ind. Aerodyn.
,
183
, pp.
273
282
. 10.1016/j.jweia.2018.11.010
34.
Wang
,
J.
, and
Wang
,
C.
,
2016
, “
Heat Transfer and Flow Characteristics of a Rectangular Channel With a Small Circular Cylinder Having Slit-Vent Vortex Generator
,”
Int. J. Therm. Sci.
,
104
, pp.
158
171
. 10.1016/j.ijthermalsci.2016.01.006
35.
Ordia
,
L.
,
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
,
2017
, “
Vortex Shedding Characteristics of a Cylinder With a Parallel Slit Placed in a Circular Pipe
,”
J. Vis.
,
20
(
2
), pp.
263
275
. 10.1007/s12650-016-0398-y
36.
Kanaris
,
N.
,
Grigoriadis
,
D.
, and
Kassinos
,
S.
,
2011
, “
Three Dimensional Flow Around a Circular Cylinder Confined in a Plane Channel
,”
Phys. Fluids
,
23
(
064106
), pp.
1
14
.
37.
Mettu
,
S.
,
Verma
,
N.
, and
Chhabra
,
R. P.
,
2006
, “
Momentum and Heat Transfer From an Asymmetrically Confined Circular Cylinder in a Plane Channel
,”
Heat Mass Transf.
,
42
(
11
), pp.
1037
1048
. 10.1007/s00231-005-0074-6
38.
Bhattacharyya
,
S.
,
Chattopadhyay
,
H.
, and
Haldar
,
A.
,
2018
, “
Design of Twisted Tape Turbulator at Different Entrance Angle for Heat Transfer Enhancement in a Solar Heater
,”
Beni-Suef Univ. J. Basic Appl. Sci.
,
7
(
1
), pp.
118
126
. 10.1016/j.bjbas.2017.08.003
You do not currently have access to this content.