Abstract

This study is concerned with studying the performance of SiO2–water nanofluid flow through a three-dimensional straight mini-channel with different values of aspect ratio (AR) of (0.5, 1.0, and 1.6) and a fixed hydraulic diameter under a uniform heat flux. The governing equations are developed and solved numerically using the finite volume method for a single-phase flow with standard Kappa-Epsilon (ҡ–ɛ) turbulence model via a user-defined function (UDF) over the Reynolds number (Re) range of (10,000–35,000). Numerical results indicated that the average Nusselt number ratio increases as the Reynolds number and volume concentration of the nanoparticles increase for all values of the channel aspect ratio. The results indicated that the maximum enhancement of the heat transfer coefficient (benefit) achieved is 94.69% at AR = 0.5, along with the lowest increase of pressure drop (penalty) of 13.1%. The highest performance evaluation criterion (PEC) of 1.64 is found at AR = 0.5, Re = 35,000, and 5% concentration.

References

1.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammed
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
. 10.1016/j.rser.2010.11.035
2.
Chamkha
,
A. J.
,
Molana
,
M.
,
Rahnama
,
A.
, and
Ghadami
,
F.
,
2018
, “
On the Nanofluids Applications in Microchannels: A Comprehensive Review
,”
Powder Technol.
,
332
, pp.
287
322
. 10.1016/j.powtec.2018.03.044
3.
Sajid
,
M. U.
, and
Ali
,
H. M.
,
2019
, “
Recent Advances in Application of Nanofluids in Heat Transfer Devices: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
103
, pp.
556
592
. 10.1016/j.rser.2018.12.057
4.
Choi
,
S. U.
, and
Eastman
,
J. A.
,
1995
,
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,
Argonne National Lab.
,
IL
.
5.
Sridhar
,
S. V.
,
Karuppasamy
,
R.
, and
Sivakumar
,
G. D.
,
2019
, “
Experimental Investigation of Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using SnO2-Water and Ag-Water Nanofluids
,”
ASME J. Thermal Sci. Eng. Appl.
,
12
(
4
), p.
041016
. 10.1115/1.4045699
6.
Esfe
,
M. H.
, and
Sarlak
,
M. R.
,
2017
, “
Experimental Investigation of Switchable Behavior of CuO-MWCNT (85%–15%)/10W-40 Hybrid Nano-Lubricants for Applications in Internal Combustion Engines
,”
J. Mol. Liq.
,
242
, pp.
326
335
. 10.1016/j.molliq.2017.06.075
7.
Bozorgan
,
N.
, and
Shafahi
,
M.
,
2015
, “
Performance Evaluation of Nanofluids in Solar Energy: A Review of the Recent Literature
,”
Micro Nano Syst. Lett.
,
3
(
1
), p.
5
. 10.1186/s40486-015-0014-2
8.
Roshani
,
M.
,
Ziaeddin Miry
,
S.
,
Hanafizadeh
,
P.
, and
Ashjaee
,
M.
,
2015
, “
Hydrodynamics and Heat Transfer Characteristics of a Miniature Plate Pin-Fin Heat Sink Utilizing Al2O3–Water and TiO2–Water Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p.
031007
. 10.1115/1.4030103
9.
Hader
,
M.
, and
Al-Kouz
,
W.
,
2019
, “
Performance of a Hybrid Photovoltaic/Thermal System Utilizing Water-Al2O3 Nanofluid and Fins
,”
Int. J. Energy Res.
,
43
(
1
), pp.
219
230
. 10.1002/er.4253
10.
Salafi
,
T.
,
Zeming
,
K. K.
, and
Zhang
,
Y.
,
2017
, “
Advancements in Microfluidics for Nanoparticle Separation
,”
Lab Chip
,
17
(
1
), pp.
11
33
. 10.1039/C6LC01045H
11.
Japar
,
W. M. A. A.
,
Sidik
,
N. A. C.
, and
Mat
,
S.
,
2018
, “
A Comprehensive Study on Heat Transfer Enhancement in Microchannel Heat Sink With Secondary Channel
,”
Int. Commun. Heat Mass Transfer
,
99
, pp.
62
81
. 10.1016/j.icheatmasstransfer.2018.10.005
12.
Gong
,
L.
,
Li
,
Y.
,
Bai
,
Z.
, and
Xu
,
M.
,
2018
, “
Thermal Performance of Micro-Channel Heat Sink With Metallic Porous/Solid Compound Fin Design
,”
Appl. Therm. Eng.
,
137
, pp.
288
295
. 10.1016/j.applthermaleng.2018.03.065
13.
Ahmed
,
M. A.
,
Yusoff
,
M. Z.
,
Ng
,
K. C.
, and
Shuaib
,
N. H.
,
2014
, “
Effect of Corrugation Profile on the Thermal–Hydraulic Performance of Corrugated Channels Using CuO–Water Nanofluid
,”
Case Stud. Thermal Eng.
,
4
, pp.
65
75
. 10.1016/j.csite.2014.07.001
14.
Ajeel
,
R. K.
,
Salim
,
W. I.
, and
Hasnan
,
K.
,
2019
, “
Design Characteristics of Symmetrical Semicircle-Corrugated Channel on Heat Transfer Enhancement With Nanofluid
,”
Int. J. Mech. Sci.
,
151
, pp.
236
250
. 10.1016/j.ijmecsci.2018.11.022
15.
Anbu
,
S.
,
Venkatachalapathy
,
S.
, and
Suresh
,
S.
,
2019
, “
Convective Heat Transfer Studies on Helically Corrugated Tubes with Spiraled Rod Inserts Using TiO2/DI Water Nanofluids
,”
J. Therm. Anal. Calorim.
,
137
(
3
), pp.
849
864
. 10.1007/s10973-019-08008-y
16.
Ajeel
,
R. K.
,
Salim
,
W. I.
, and
Hasnan
,
K.
,
2019
, “
Experimental and Numerical Investigations of Convection Heat Transfer in Corrugated Channels Using Alumina Nanofluid Under a Turbulent Flow Regime
,”
Chem. Eng. Res. Des.
,
148
, pp.
202
217
. 10.1016/j.cherd.2019.06.003
17.
Dominic
,
A.
,
Sarangan
,
J.
,
Suresh
,
S.
, and
Devah Dhanush
,
V. S.
,
2015
, “
An Experimental Investigation of Wavy and Straight Minichannel Heat Sinks Using Water and Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p.
031012
. 10.1115/1.4030104
18.
Hatami
,
M.
,
Kheirkhah
,
A.
,
Ghanbari-Rad
,
H.
, and
Jing
,
D.
,
2019
, “
Numerical Heat Transfer Enhancement Using Different Nanofluids Flow Through Venturi and Wavy Tubes
,”
Case Stud. Therm. Eng.
,
13
, p.
100368
. 10.1016/j.csite.2018.100368
19.
Al-Rashed
,
A. A.
,
Shahsavar
,
A.
,
Rasooli
,
O.
,
Moghimi
,
M. A.
,
Karimipour
,
A.
, and
Tran
,
M. D.
,
2019
, “
Numerical Assessment Into the Hydrothermal and Entropy Generation Characteristics of Biological Water-Silver Nano-Fluid in a Wavy Walled Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
104
, pp.
118
126
. 10.1016/j.icheatmasstransfer.2019.03.007
20.
Toghraie
,
D.
,
Abdollah
,
M. M. D.
,
Pourfattah
,
F.
,
Akbari
,
O. A.
, and
Ruhani
,
B.
,
2018
, “
Numerical Investigation of Flow and Heat Transfer Characteristics in Smooth, Sinusoidal and Zigzag-Shaped Microchannel With and Without Nanofluid
,”
J. Therm. Anal. Calorim.
,
131
(
2
), pp.
1757
1766
. 10.1007/s10973-017-6624-6
21.
Gorjaei
,
A. R.
, and
Shahidian
,
A.
,
2019
, “
Heat Transfer Enhancement in a Curved Tube by Using Twisted Tape Insert and Turbulent Nanofluid Flow
,”
J. Therm. Anal. Calorim.
,
137
(
3
), pp.
1059
1068
. 10.1007/s10973-019-08013-1
22.
Behnampour
,
A.
,
Akbari
,
O. A.
,
Safaei
,
M. R.
,
Ghavami
,
M.
,
Marzban
,
A.
,
Shabani
,
G. A. S.
, and
Mashayekhi
,
R.
,
2017
, “
Analysis of Heat Transfer and Nanofluid Fluid Flow in Microchannels With Trapezoidal, Rectangular and Triangular Shaped Ribs
,”
Phys. E
,
91
, pp.
15
31
. 10.1016/j.physe.2017.04.006
23.
Salman
,
S. D.
,
2019
, “
Comparative Study on Heat Transfer Enhancement of Nanofluids Flow in Ribs Tube Using CFD Simulation
,”
Heat Transfer Asian Res.
,
48
(
1
), pp.
148
163
. 10.1002/htj.21376
24.
Al-Shamani
,
A. N.
,
Sopian
,
K.
,
Mohammed
,
H. A.
,
Mat
,
S.
,
Ruslan
,
M. H.
, and
Abed
,
A. M.
,
2015
, “
Enhancement Heat Transfer Characteristics in the Channel With Trapezoidal Rib–Groove Using Nanofluids
,”
Case Stud. Therm. Eng.
,
5
, pp.
48
58
. 10.1016/j.csite.2014.12.003
25.
Alosious
,
S.
,
Sarath
,
S. R.
,
Nair
,
A. R.
, and
Krishnakumar
,
K.
,
2018
, “
Investigations on Convective Heat Transfer Enhancement in Circular Tube Radiator Using Al2O3 and CuO Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051012
. 10.1115/1.4039924
26.
Ramirez-Tijerina
,
R.
,
Rivera-Solorio
,
C. I.
,
Singh
,
J.
, and
Nigam
,
K. D. P.
,
2018
, “
Numerical Study of Heat Transfer Enhancement for Laminar Nanofluids Flow
,”
Appl. Sci.
,
8
(
12
), p.
2661
. 10.3390/app8122661
27.
Krishnakumar
,
T. S.
,
Sheeba
,
A.
,
Mahesh
,
V.
, and
Prakash
,
M. J.
,
2019
, “
Heat Transfer Studies on Ethylene Glycol/Water Nanofluid Containing TiO2 Nanoparticles
,”
Int. J. Refrig.
,
102
, pp.
55
61
. 10.1016/j.ijrefrig.2019.02.035
28.
Hussien
,
A. A.
,
Yusop
,
N. M.
,
Abdullah
,
M. Z.
,
Moh’d A
,
A. N.
, and
Khavarian
,
M.
,
2019
, “
Study on Convective Heat Transfer and Pressure Drop of MWCNTs/Water Nanofluid in Mini-Tube
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
123
132
. 10.1007/s10973-018-7234-7
29.
Taamneh
,
Y.
,
Kabeel
,
A. E.
,
Prakash
,
N.
,
Sathyamurthy
,
R.
, and
Chamkha
,
A. J.
,
2019
, “
Thermal and Hydraulic Characteristics of a Triangular Duct Using an Al2O3 Nanofluid in a Turbulent Flow Regime
,”
Heat Transfer Asian Res.
,
48
(
6
), pp.
2639
2654
. 10.1002/htj.21521
30.
Hussein
,
A. M.
,
Sharma
,
K. V.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2013
, “
The Effect of Cross Sectional Area of Tube on Friction Factor and Heat Transfer Nanofluid Turbulent Flow
,”
Int. Commun. Heat Mass Transfer
,
47
, pp.
49
55
. 10.1016/j.icheatmasstransfer.2013.06.007
31.
Mehrjou
,
B.
,
Heris
,
S. Z.
, and
Mohamadifard
,
K.
,
2015
, “
Experimental Study of CuO/Water Nanofluid Turbulent Convective Heat Transfer in Square Cross-Section Duct
,”
Exp. Heat Transfer
,
28
(
3
), pp.
282
297
. 10.1080/08916152.2013.871606
32.
Qi
,
C.
,
Yang
,
L.
,
Chen
,
T.
, and
Rao
,
Z.
,
2018
, “
Experimental Study on Thermo-Hydraulic Performances of TiO2-H2O Nanofluids in a Horizontal Elliptical Tube
,”
Appl. Therm. Eng.
,
129
, pp.
1315
1324
. 10.1016/j.applthermaleng.2017.10.137
33.
Şenay
,
G.
,
Kaya
,
M.
,
Gedik
,
E.
, and
Kayfeci
,
M.
,
2019
, “
Numerical Investigation on Turbulent Convective Heat Transfer of Nanofluid Flow in a Square Cross-Sectioned Duct
,”
Int. J. Numer. Methods Heat Fluid Flow.
,
29
(
4
), pp.
1432
1447
. 10.1108/HFF-06-2018-0260
34.
Jehhef
,
K. A.
,
Khanjar
,
R. H.
, and
Siba
,
M. A.
,
2019
, “
Convection Heat Transfer Enhancement in Square Cross-Section With Obstacle Using Nanofluids
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
518
(
3
), p.
032004
. 10.1088/1757-899X/518/3/032004
35.
Attalla
,
M.
,
2019
, “
Experimental Investigation of Heat Transfer and Pressure Drop of SiO2/Water Nanofluid Through Conduits With Altered Cross-Sectional Shapes
,”
Heat Mass Transfer
,
55
(
12
), pp.
3427
3442
. 10.1007/s00231-019-02668-0
36.
Estevez-Albuja
,
S.
,
Jimenez
,
G.
,
Al Issa
,
S.
,
Macian-Juan
,
R.
,
Fernández-Cosials
,
K.
, and
Queral
,
C.
,
2018
, “
Steam Condensation Simulation in a Scaled IRWST-ADS Simulator With GOTHIC 8.1
,”
Nucl. Eng. Des.
,
334
, pp.
96
109
. 10.1016/j.nucengdes.2018.04.020
37.
Guo
,
W.
,
Li
,
G.
,
Zheng
,
Y.
, and
Dong
,
C.
,
2018
, “
Numerical Study of Nanofluids Thermal and Hydraulic Characteristics Considering Brownian Motion Effect in Micro fin Heat Sink
,”
J. Mol. Liq.
,
264
, pp.
38
47
. 10.1016/j.molliq.2018.04.152
38.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1983
,
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
,
Pergamon Press
,
New York
, pp.
96
116
.
39.
FLUENT
,
2006
,
Fluent user manual Version 6.2
,
FLUENT Incorporated
,
Lebanon, NH
.
40.
Manay
,
E.
, and
Mandev
,
E.
,
2019
, “
Experimental Investigation of Mixed Convection Heat Transfer of Nanofluids in a Circular Microchannel With Different Inclination Angles
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
887
900
. 10.1007/s10973-018-7463-9
41.
Kulkarni
,
D. P.
,
Namburu
,
P. K.
,
Ed Bargar
,
H.
, and
Das
,
D. K.
,
2008
, “
Convective Heat Transfer and Fluid Dynamic Characteristics of SiO2 Ethylene Glycol/Water Nanofluid
,”
Heat Transfer Eng.
,
29
(
12
), pp.
1027
1035
. 10.1080/01457630802243055
42.
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2012
,
Nanoparticle Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
43.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
. 10.1016/j.ijthermalsci.2010.02.013
44.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
. 10.1016/j.enconman.2010.06.072
45.
Drew
,
D. A.
, and
Passman
,
S. L.
,
2006
,
Theory of Multicomponent Fluids
,
Springer Science & Business Media
,
Berlin, Germany
.
46.
Nusselt
,
W.
,
1931
, “
Der Wärmeaustausch Zwischen Wand und Wasser im Rohr
,”
Forschung auf dem Gebiet des Ingenieurwesens A
,
2
(
9
), pp.
309
313
. 10.1007/BF02583210
47.
Li
,
Q.
, and
Xuan
,
Y.
,
2002
, “
Convective Heat Transfer and Flow Characteristics of Cu-Water Nanofluid
,”
Sci. China, Ser. E: Technol. Sci.
,
45
(
4
), pp.
408
416
. 10.1360/02ye9047
48.
Chen
,
C. J.
,
1997
,
Fundamentals of Turbulence Modelling
,
CRC Press
,
Boca Raton, FL
.
49.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
4618
. 10.1016/j.ijheatmasstransfer.2010.06.032
50.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
Harlow, UK
.
51.
Zeinali Heris
,
S.
,
Kazemi-Beydokhti
,
A.
,
Noie
,
S. H.
, and
Rezvan
,
S.
,
2012
, “
Numerical Study on Convective Heat Transfer of Al2O3/Water, CuO/Water and Cu/Water Nanofluids Through Square Cross-Section Duct in Laminar Flow
,”
Eng. Appl. Comput. Fluid Mech.
,
6
(
1
), pp.
1
14
. 10.1080/19942060.2012.11015398
52.
Jang
,
S. P.
, and
Choi
,
S. U.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
. 10.1016/10.1063/1.1756684
53.
Kayhani
,
M. H.
,
Soltanzadeh
,
H.
,
Heyhat
,
M. M.
,
Nazari
,
M.
, and
Kowsary
,
F.
,
2012
, “
Experimental Study of Convective Heat Transfer and Pressure Drop of TiO2/Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
39
(
3
), pp.
456
462
. 10.1016/j.icheatmasstransfer.2012.01.004
You do not currently have access to this content.