Abstract

The present study reports the numerical simulation of turbulent plane offset jet flow over a moving plate. The effect of plate velocity on various flow characteristics is discussed in detail including the special case of a stationary plate. For turbulence closure, the low-Reynolds number (LRN) turbulence model proposed by Yang and Shih (YS) is applied because it is computationally robust and reported to work quite effectively in several complex flow situations. The computations have been carried out with a Reynolds number of 15,000 for various offset ratios (OR = 3, 7, and 11) and different velocity ratios (Uplate) of the plate in the range 0–2. The finite volume method (FVM) with a staggered grid arrangement has been used to solve the transport equations. The application of the LRN model along with the integration to wall (ITW) approach enables us to capture one closed loop of the Moffatt vortex near the left corner of the wall for the stationary plate case. The spreading of the jet has been found to reduce by increasing the velocity of the plate. The jet half-width lies very close to the wall for the plate to jet velocity 1.5 and 2. For two extreme limits of plate velocity, i.e., Uplate = 0 and 2, the nearly self-similar profiles are observed at different axial locations in the wall jet region. Also, the flow is observed to exhibit nearly self-similar behavior when velocity profiles are plotted for various offset ratios at a given axial location in the wall jet region for Uplate = 0 and 2. It has been found that the flow characteristics are significantly influenced by the plate velocity.

References

1.
Zumbrunnen
,
D. A.
,
1991
, “
Convective Heat and Mass Transfer in the Stagnation Region of a Laminar Planar Jet Impinging on a Moving Surface
,”
J. Heat Transfer
,
113
, pp.
563
570
. 10.1115/1.2910603
2.
Lund
,
T. S.
,
1986
, “
Augmented Thrust and Mass Flow Associated with Two– Dimensional Jet Reattachment
,”
AIAA J.
,
24
(
12
), pp.
1964
1970
. 10.2514/3.9554
3.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1997
, “
Comparison of Flow Characteristics in the Near Field of Two Parallel Plane Jets and an Offset Jet
,”
Phys. Fluids
,
9
(
10
), pp.
2919
2931
. 10.1063/1.869404
4.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1998
, “
A Turbulent Plane Offset Jet with Small Offset Ratio
,”
Exp. Fluids
,
24
(
1
), pp.
47
57
. 10.1007/s003480050149
5.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2013
, “
Comparison of Two Low-Reynolds Number Turbulence Models for Fluid Flow Study of Wall Bounded Jets
,”
Int. J. Heat Mass Transfer
,
61
, pp.
365
380
. 10.1016/j.ijheatmasstransfer.2013.01.062
6.
Al Ali
,
A. R.
, and
Janajreh
,
I.
,
2015
, “
Numerical Simulation of Turbine Blade Cooling via Jet Impingement
,”
International Conference on Applied Energy, Energy Procedia
,
UAE
, vol.
75
, pp.
3220
3229
.
7.
Wang
,
J.
,
Kong
,
H.
,
Xude
,
Y.
, and
Wude
,
J.
,
2019
, “
Experimental Investigation of Heat Transfer and Flow Characteristics in Finned Copper Foam Heat Sinks Subjected to Jet Impingement Cooling
,”
Appl. Energy
,
241
, pp.
433
443
. 10.1016/j.apenergy.2019.03.040
8.
Tritton
,
D. J.
,
1977
,
Physical Fluid Dynamics
,
Van Nostrand Reinhold Company
,
New York
9.
Nozaki
,
T.
,
1983
, “
Reattachment Flow Issuing From a Finite Width Nozzle
,”
Bull. JSME
,
26
(
221
), pp.
221
227
. 10.1299/jsme1958.26.1884
10.
Bremmer
,
R.
,
Thompson
,
H. D.
, and
Stevenson
,
W. H.
,
1980
, “
An Experimental and Numerical Comparison of Turbulent Flow Over a Step
,”
Technical Report Air Force Wright Aeronautical Laboratory
,
IN
,
December
, pp.
1
130
.
11.
Miller
,
D. R.
, and
Comings
,
E. W.
,
1959
,
Force—Momentum Fields in a Dual—Jet Flow
,
Purdue University
,
Lafayette, IN
, pp.
237
256
.
12.
Pelfrey
,
J. R. R.
, and
Liburdy
,
J. A.
,
1986
, “
Mean Flow Characteristics of a Turbulent Offset Jet
,”
Trans. ASME J. Fluids Eng.
,
108
(
1
), pp.
82
88
. 10.1115/1.3242548
13.
Kumar
,
A.
, and
Das
,
M. K.
,
2011
, “
Study of a Turbulent Dual Jet Consisting of a Wall Jet and an Offset Jet
,”
J. Fluid. Eng.
,
133
(
10
), pp.
201
211
. 10.1115/1.4004823
14.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
138
. 10.1016/0094-4548(74)90150-7
15.
Yang
,
Z.
, and
Shih
,
T. H.
,
1992
,
New Time Scale Based k–ε Model for Near Wall Turbulence
, Vol.
7
,
National Aeronautics and Space Administration Lewis Research Center
,
Cleveland, OH
, pp.
1191
1198
.
16.
Moffatt
,
H. K.
,
1964
, “
Viscous and Resistive Eddies Near a Sharp Corner
,”
J. Fluid Mech.
,
18
(
1
), pp.
1
18
. 10.1017/S0022112064000015
17.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2015
, “
A Comparative Study of Heat Transfer Characteristics of Wall-Bounded Jets Using Different Turbulence Models
,”
Int. J. Therm. Sci.
,
89
, pp.
337
356
. 10.1016/j.ijthermalsci.2014.11.019
18.
Rathore
,
S. K.
,
2019
, “
Study of Conjugate Heat Transfer From Heated Plate by Turbulent Offset Jet in Presence of Freestream Motion Using Low-Reynolds Number Modeling
,”
J. Appl. Fluid Mech.
,
12
(
2
), pp.
617
630
. 10.29252/jafm.12.02.28974
19.
Yang
,
Y. T.
, and
Hao
,
T. P.
,
1999
, “
Numerical Studies of Three Turbulent Slot Jets With and Without Moving Surface
,”
Acta Mech.
,
136
(
1–2
), pp.
17
27
. 10.1007/BF01292295
20.
Chattopadhyay
,
H.
, and
Saha
,
S. K.
,
2003
, “
Turbulent Flow and Heat Transfer From a Slot Jet Impinging on a Moving Plate
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
685
697
. 10.1016/S0142-727X(03)00062-6
21.
Senter
,
J.
, and
Solliec
,
C.
,
2007
, “
Flow Field Analysis of a Turbulent Slot Air Jet Impinging on a Moving Flat Surface
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
708
719
. 10.1016/j.ijheatfluidflow.2006.08.002
22.
Li
,
D.
,
Fan
,
J.
, and
Cen
,
K.
,
2012
, “
Direct Numerical Simulation of the Entrainment Coefficient and Turbulence Properties for Compressible Spatially Evolving Axisymmetric Jets
,”
Fuel
,
102
, pp.
470
477
. 10.1016/j.fuel.2012.01.029
23.
Chen
,
L.
,
Asaia
,
K.
,
Nonomuraa
,
T.
,
Xib
,
G.
, and
Liuc
,
T.
,
2018
, “
“A Review of Backward-Facing Step (BFS) Flow Mechanisms,” Heat Transfer and Control
,”
Ther. Sci. Eng. Prog.
,
6
, pp.
194
216
. 10.1016/j.tsep.2018.04.004
24.
Sharif
,
M. A. R.
, and
Banerjee
,
A.
,
2009
, “
Numerical Analysis of Heat Transfer due to Confined Slot-Jet Impingement on a Moving Plate
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
532
540
. 10.1016/j.applthermaleng.2008.03.011
25.
Benmouhoub
,
D.
, and
Mataoui
,
A.
,
2014
, “
Computation of Heat Transfer of a Plane Turbulent Jet Impinging a Moving Plate
,”
Therm. Sci.
,
18
(
4
), pp.
1259
1271
. 10.2298/TSCI111027101B
26.
Pawar
,
S.
, and
Patel
,
D. K.
,
2019
, “
Influence of Moving Plate Velocity on Conjugate Heat Transfer Due to the Impingement of an Inclined Slot Jet
,”
Int. J. Mod. Phys. C
,
30
, pp.
1
29
. 10.1142/S0129183120500060
27.
Pawar
,
S.
, and
Patel
,
D. K.
,
2020
, “
Study of Conjugate Heat Transfer From the Impingement of an Inclined Free Slot Jet Onto the Moving Hot Surface
,”
Int. Commun. Heat Mass Transfer
,
110
, pp.
1
21
.
28.
Buonomo
,
B.
,
Manca
,
O.
,
Bondareva
,
N. S.
, and
Sheremet
,
M. A.
,
2020
, “
Thermal and Fluid Dynamic Behaviors of Confined Slot Jets Impinging on an Isothermal Moving Surface With Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
111
, pp.
1
29
.
29.
Satish
,
N.
, and
Venkatasubbaiah
,
K.
,
2019
, “
Numerical Investigations of Flow and Heat Transfer Characteristics Between Turbulent Double Jet Impingement and a Moving Plate
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051001
. 10.1115/1.4042584
30.
Chattopadhyay
,
H.
, and
Benim
,
A. C.
,
2011
, “
Turbulent Heat Transfer Over a Moving Surface due to Impinging Slot Jets, Journal of Heat Transfer
,”
Am. J. Mech. Eng.
,
133
, pp.
1045021
1045025
.
31.
Satish
,
N.
, and
Venkatasubbaiah
,
K.
,
2016
, “
Conjugate Heat Transfer Analysis of Turbulent Forced Convection of Moving Plate in a Channel Flow
,”
Appl. Therm. Eng.
,
100
, pp.
987
998
. 10.1016/j.applthermaleng.2016.02.076
32.
Achari
,
A. M.
, and
Das
,
M. K.
,
2017
, “
Conjugate Heat Transfer Study of a Turbulent Slot Jet Impinging on a Moving Plate
,”
Heat Mass Transfer
,
53
(
3
), pp.
1017
1035
. 10.1007/s00231-016-1873-7
33.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2016
, “
Numerical Investigation on the Performance of Low-Reynolds Number k−ε Model for a Buoyancy-Opposed Wall Jet Flow
,”
Int. J. Heat Mass Transfer
,
95
, pp.
636
649
. 10.1016/j.ijheatmasstransfer.2015.10.067
34.
Addad
,
Y.
,
Benhamadouche
,
S.
, and
Laurence
,
D.
,
2004
, “
The Negatively Buoyant Wall Jet: LES Results
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
795
808
. 10.1016/j.ijheatfluidflow.2004.05.008
35.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Calculation of Low-Reynolds-Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1119
1130
. 10.1016/0017-9310(73)90125-7
36.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
. 10.1080/01495728408961817
37.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics—The Finite Volume Method
,
Pearson Education Limited
,
England
38.
Biswas
,
G.
, and
Eswaran
,
V.
,
2002
,
Turbulent Flows—Fundamentals, Experiments and Modeling
,
Alpha Science International Ltd.
,
England
.
39.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishers
,
New York
40.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing and Development
,”
NASA Technical Memorandom
,
California
,
April
, pp.
110
446
.
41.
Holland
,
J. T.
, and
Liburdy
,
J. A.
,
1990
, “
Measurements of the Thermal Characteristics of a Turbulent Offset Jets
,”
Int. J. Heat Mass Transfer
,
33
(
1
), pp.
69
78
. 10.1016/0017-9310(90)90142-H
42.
Wygnanski
,
I.
,
Katz
,
Y.
, and
Horev
,
E.
,
1992
, “
On the Applicability of Various Scaling Laws to the Turbulent Wall Jet
,”
J. Fluid Mech.
,
234
(
1
), pp.
669
690
. 10.1017/S002211209200096X
43.
Jovic
,
S.
, and
Driver
,
D. M.
,
1994
, “
Backward-Facing Step Measurements at Low Reynolds Number, Re = 5000
,”
NASA Technical Memorandom
,
California
,
February
, pp.
1
24
.
44.
Spall
,
A.
,
Anderson
,
E. A.
, and
Allen
,
J.
,
2004
, “
Momentum Flux in Plane Parallel Jets
,”
J. Fluid. Eng.
,
126
(
4
), pp.
665
670
. 10.1115/1.1778717
You do not currently have access to this content.