Abstract

This investigation deals with buoyancy-induced convection of air in an open-cell aluminum foam under different orientations. Metal foam samples with a porosity of 93% and pore densities of 2, 4, 8, and 16 pores per cm (PPC) were used. The average heat transfer coefficient was determined for several values of the angle of inclination of the base plate, ranging from the vertical to the horizontal, with the foam facing upwards as well as downwards. The heat transfer coefficient was found to depend on the pore density, the thickness of the foam, the orientation of the base plate, and the difference in temperature between the base plate and the ambient. In all cases, the average heat transfer coefficient was found to be higher than that of the base plate without the foam. For a given angle of inclination and foam thickness, the thermal performance of samples with lower pore density was found to be superior. Two empirical correlations for predicting the effective Nusselt number have been proposed, one for the cases where the foam faces upwards and the other for cases where the foam faces downwards, relating the Nusselt number to Rayleigh number, Darcy number, the ratio of the thickness of the foam to the length of the square base plate and the angle of inclination from the vertical in the range of −90 deg (foam facing down) to +90 deg (foam facing up). The correlation predictions were found to match with experimentally determined Nusselt numbers within ±5% when the Rayleigh number ranged from 2500 to 6500.

References

1.
Prasad
,
V.
,
Kulacki
,
F. A.
, and
Keyhani
,
M.
,
1985
, “
Natural Convection in Porous Media
,”
J. Fluid Mech.
,
150
, pp.
89
119
. 10.1017/S0022112085000040
2.
Cheng
,
P.
,
1978
, “
Heat Transfer in Geothermal Systems
,”
Adv. Heat Transfer
,
4
, pp.
1
105
.
3.
Nield
,
D. A.
, and
Bejan
,
A.
,
2002
,
Convection in Porous Media
,
Springer
,
New York
.
4.
Cheng
,
P.
,
Ali
,
C. L.
, and
Verma
,
A. K.
,
1981
, “
An Experimental Study of Non-Darcian Effects in Free Convection in a Saturated Porous Medium
,”
Lett. Heat Mass Transfer
,
8
(
4
), pp.
261
165
. 10.1016/0094-4548(81)90040-0
5.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
. 10.1115/1.1287793
6.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2006
, “
Metal Foam and Finned Metal Foam Heat Sinks for Electronics Cooling in Buoyancy-Induced Convection
,”
ASME J. Electron. Packaging
,
128
(
3
), pp.
259
266
. 10.1115/1.2229225
7.
Kathere
,
V.
,
Davidson
,
J. H.
, and
Kulkachi
,
F. A.
,
2008
, “
Natural Convection in Water-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3794
3802
. 10.1016/j.ijheatmasstransfer.2007.11.051
8.
De Schampheleire
,
S.
,
De Jaeger
,
P.
,
Reynders
,
R.
,
De Kerpel
,
K.
,
Ameel
,
B.
,
T'Joen
,
C.
,
Huisseune
,
H.
,
Lecompte
,
S.
, and
De Paepe
,
M.
,
2013
, “
Experimental Study of Buoyancy-Driven Flow in Open-Cell Aluminum Foam Heat Sinks
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
30
40
. https://doi.org/10.1016/j.applthermaleng.2013.05.010
9.
Qu
,
Z.
,
Wang
,
T.
,
Tao
,
W.
, and
Lu
,
T.
,
2012
, “
Experimental Study of Air Natural Convection on Metallic Foam-Sintered Plate
,”
Int. J. Heat Fluid Flow
,
38
, pp.
126
132
. 10.1016/j.ijheatfluidflow.2012.08.005
10.
Krishna
,
T. R.
,
Moulic
,
S. G.
, and
Bhattacharya
,
A.
,
2017
, “
Experimental Study of Buoyancy-Induced Convection in Open Cell Aluminium Metal Foams
,”
ASME IMECE, ASME
,
New York
, p.
V008T10A023
.
11.
Alya
,
S. P.
,
Arif
,
A. F. M.
,
Al-Athela
,
K. S.
,
Mostaghimi
,
J.
, and
Zubaira
,
S. M.
,
2016
, “
Performance of Open Pore Metal Foam Heat Sinks Fabricated With Thermally Sprayed Interface
,”
Appl. Therm. Eng.
,
105
, pp.
411
424
. 10.1016/j.applthermaleng.2016.03.012
12.
Hafeez
,
P.
,
Esmaeelpanah
,
J.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2013
, “
Heat Transfer Through Metal-Foam Heat Exchanger at Higher Temperature
,”
Proceedings of the ASME 2013 Heat Transfer Summer Conference Volume 2: Heat Transfer Enhancement for Practical Applications; Heat and Mass Transfer in Fire and Combustion; Heat Transfer in Multiphase Systems; Heat and Mass Transfer in Biotechnology
,
Minneapolis, Minnesota
,
July 14–19
.
13.
Al-Athel
,
K. S.
,
Aly
,
S. P.
,
Arif
,
A. F. M.
, and
Mostaghimi
,
J.
,
2015
, “
Thermal Behavior of Aluminum Alloy Metal Foam Heat Sinks: A Computational and Experimental Approach
,”
Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Volume 1: Thermal Management
,
San Francisco, CA
,
July 6–9
.
14.
Beckermann
,
C.
,
Viskanta
,
R.
, and
Ramadhyani
,
S.
,
1986
, “
A Numerical Study of Non-Darcian Natural Convection in a Vertical Enclosure Filled With a Porous Medium
,”
Numer. Heat Transfer
,
10
(
6
), pp.
557
570
. 10.1080/10407788608913535
15.
Lauriat
,
G.
, and
Prasad
,
V.
,
1987
, “
Natural Convection in a Vertical Porous Cavity: A Numerical Study of Brinkman-Extended Darcy Formulation in Natural Convection in Porous Media
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
688
696
. 10.1115/1.3248143
16.
David
,
E.
,
Lauriat
,
G.
, and
Cheng
,
P.
,
1991
, “
A Numerical Solution of Variable Porosity Effects on Natural Convection in Packed-Sphere Cavity
,”
ASME J. Heat Transfer
,
113
(
2
), pp.
391
399
. 10.1115/1.2910574
17.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
. 10.1016/S0017-9310(02)00089-3
18.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2005
, “
Natural Convection in Metal Foams with Open Cells
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2452
2463
. 10.1016/j.ijheatmasstransfer.2005.01.002
19.
Bai
,
M.
, and
Chung
,
J. N.
,
2011
, “
Analytical and Numerical Prediction of Heat Transfer and Pressure Drop in Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
869
880
. 10.1016/j.ijthermalsci.2011.01.007
20.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
Simulation of Thermal Transport in Open-Cell Metal Foams: Effect of Periodic Unit-Cell Structure
,”
ASME J. Heat Transfer
,
130
(
2
), p.
2
. 10.1115/1.2789718
21.
Ramanathan
,
V.
,
Narasimhan
,
A.
, and
Babu
,
V.
,
2011
, “
High Rayleigh Number Natural Convection Inside 2D Porous Enclosures Using the Lattice Boltzmann Method
,”
ASME J. Heat Transfer
,
133
(
6
), p.
062501
. 10.1115/1.4003534
22.
Reddy
,
B. V. K.
, and
Arunn Narasimhan
,
A.
,
2010
, “
Heat Generation Effects in Natural Convection Inside a Porous Annulus
,”
Int. Comm. Heat Mass Transfer
,
37
(
6
), pp.
607
610
. 10.1016/j.icheatmasstransfer.2009.12.018
23.
Chakkingal
,
M.
,
De Geus
,
J.
,
Kenjereš
,
S.
,
Ataei-Dadavi
,
I.
,
Tummers
,
M. J.
, and
Kleijn
,
C. R.
,
2020
, “
Assisting and Opposing Mixed Convection With Conjugate Heat Transfer in a Differentially Heated Cavity Filled With Coarse-Grained Porous Media
,”
Int. Commun. Heat Mass Transfer
,
111
, p.
104457
. 10.1016/j.icheatmasstransfer.2019.104457
24.
Xiong
,
Q.
,
Zahiri
,
H. R.
,
Izadi
,
M.
, and
Assareh
,
E.
,
2021
, “
Natural Heat Exchange in Inhomogeneous Porous Medium Using Linear and Quadratic Porosity Distribution
,”
Int. J. Therm. Sci.
,
161
, p.
106731
. 10.1016/j.ijthermalsci.2020.106731
25.
Rao
,
P. S.
, and
Barman
,
P.
,
2020
, “
Natural Convection in a Wavy Porous Cavity Subjected to a Partial Heat Source
,”
Int. Commun. Heat Mass Transfer
,
120
. https://doi.org/10.1016/j.icheatmasstransfer.2020.105007
26.
Belabid
,
J.
, and
Allali
,
K.
,
2020
, “
Effect of Temperature Modulation on Natural Convection in a Horizontal Porous Annulus
,”
Int. J. Therm. Sci.
,
151
, p.
106273
. 10.1016/j.ijthermalsci.2020.106273
27.
Chand
,
R.
,
Rana
,
G.
, and
Hussein
,
A. K.
,
2015
, “
On the Onset of Thermal Instability in a low Prandtl Number Nanofluid Layer in a Porous Medium
,”
J. Appl. Fluid Mech.
,
8
(
2
), pp.
265
272
. 10.18869/acadpub.jafm.67.221.22830
28.
Hussein
,
A. K.
, and
Hussain
,
S.
,
2013
, “
Natural Convection in a Square Enclosure Filled With a Saturated Porous Matrix Under Different Discrete Heat Sources Locations
”,
World Academy of Science, Engineering and Technology
, Vol.
78
, pp.
1896
1902
.
29.
Ahmed
,
S.
,
Hussein
,
A. K.
,
Abd El-Aziz
,
M.
, and
Sivasankaran
,
S.
,
2016
, “
Conjugate Natural Convection in an Inclined Square Porous Enclosure With Finite Wall Thickness and Partially Heated From its Left Sidewall
,”
Heat Transfer Res.
,
47
(
4
), pp.
383
402
. 10.1615/HeatTransRes.2016007964
30.
Adekeye
,
T.
,
Adegun
,
I.
,
Okekunle
,
P.
,
Hussein
,
A. K.
,
Oyedepo
,
S.
,
Adetiba
,
E.
, and
Fayomi
,
O.
,
2017
, “
Numerical Analysis of the Effects of Selected Geometrical Parameters and Fluid Properties on MHD Natural Convection Flow in an Inclined Elliptic Porous Enclosure With Localized Heating
,”
Heat Transfer Asian Res.
,
46
(
3
), pp.
261
293
. 10.1002/htj.21211
31.
Bejan
,
A.
, and
Poulikakos
,
D.
,
1984
, “
The Non-Darcy Regime for Vertical Boundary Layer Natural Convection in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
717
722
. 10.1016/0017-9310(84)90141-8
32.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
. 10.1115/1.2826001
33.
Moffat
,
R. J.
,
Eaton
,
J. K.
, and
Onstad
,
A.
,
2009
, “
A Method For Determining The Heat Transfer Properties of Foam-Fins
,”
ASME J. Heat Transfer
,
131
(
1
), p.
011603
. 10.1115/1.2977599
34.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
. 10.1016/S0017-9310(01)00220-4
35.
Amiri
,
A.
,
Vafai
,
K.
, and
Kuzay
,
T. M.
,
1995
, “
Effects of Boundary Conditions on Non-Darcian Heat Transfer Through Porous Media and Experimental Comparisons
,”
Numer. Heat Transfer, Part A
,
27
(
6
), pp.
651
664
. 10.1080/10407789508913724
36.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
. 10.1016/0017-9310(94)90219-4
37.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
. 10.1016/j.ijheatmasstransfer.2014.05.053
38.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
. 10.1016/0017-9310(81)90027-2
39.
Vafai
,
K.
, and
Sozen
,
M.
,
1990
, “
Analysis of Energy and Momentum Transport for Fluid Flow Through A Porous Bed
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
690
699
. 10.1115/1.2910442
40.
Khashan
,
S. A.
,
Al-Amiri
,
A. M.
, and
Pop
,
I.
,
2006
, “
Numerical Simulation of Natural Convection Heat Transfer In A Porous Cavity Heated From Below Using A Non-Darcian and Thermal Non-Equilibrium Model
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1039
1049
. 10.1016/j.ijheatmasstransfer.2005.09.011
41.
De Schampheleire
,
S.
,
De Kerpel
,
K.
,
De Jaeger
,
P.
,
Huisseune
,
H.
,
Ameel
,
B.
, and
De Paepe
,
M.
,
2015
, “
Buoyancy Driven Convection In Open-Cell Metal Foam Using The Volume Averaging Theory
,”
Appl. Therm. Eng.
,
79
, pp.
225
233
. 10.1016/j.applthermaleng.2015.01.019
42.
Parhizi
,
M.
,
Torabi
,
M.
, and
Jain
,
A.
,
2021
, “
Local Thermal non-Equilibrium (LTNE) Model for Developed Flow in Porous Media with Spatially-Varying Biot Number
,”
Int. J. Heat Mass Transfer
,
164
, p.
120538
. 10.1016/j.ijheatmasstransfer.2020.120538
43.
Feng
,
X.-B.
,
Liu
,
Q.
, and
He
,
Y.-L.
,
2020
, “
Numerical Simulations of Convection Heat Transfer in Porous Media Using a Cascaded Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
151
. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119410
44.
Davidson
,
J. H.
,
Kulacki
,
F. A.
, and
Savela
,
D.
,
2009
, “
Natural Convection in Water-Saturated Reticulated Vetreous Carbon Foam
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4479
4783
. 10.1016/j.ijheatmasstransfer.2009.03.051
45.
Hu
,
X.
, and
Gong
,
X.
,
2020
, “
Experimental and Numerical Investigation on Thermal Performance Enhancement of Phase Change Material Embedding Porous Metal Structure with Cubic Cell
,”
Appl. Therm. Eng.
,
175
. https://doi.org/10.1016/j.applthermaleng.2020.115337
46.
Kiwan
,
S.
,
Alwan
,
H.
, and
Abdelal
,
N.
,
2020
, “
An Experimental Investigation of the Natural Convection Heat Transfer From a Vertical Cylinder Using Porous Fins
,”
Appl. Therm. Eng.
,
179
, p.
2020
. 10.1016/j.applthermaleng.2020.115673
47.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
48.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
, 7, p.
995
.
You do not currently have access to this content.