Abstract

To generate boiling water beyond 100 °C via heat pump technology, the prototype of an ultra-high temperature air source heat pump water heater (ASHPWH) based on a single-stage compression cycle of R134a was established, and an experimental investigation on it was conducted under an environment temperature of 25 °C. Then, thermodynamic analyses were carried out on the basis of the experimental results, especially when the prototype produced 95.9 and 100.3 °C water. The experimental and analytical results indicate that water beyond 100 °C was achieved through the prototype. When producing 100.3 °C water, the discharge temperature and compression ratio of the compressor of the prototype are only 108.4 °C and 4.07, respectively, which are in moderate levels. Correspondingly, the work input of the compressor is 0.622 kW, the heating capacity is 2.786 kW, and the heating coefficient of performance is 4.48. In addition, when producing 95.9 and 100.3 °C water, the system exergy efficiencies of the prototype are 50.76% and 49.73%, which are larger than those of the existing ASHPWHs, demonstrating that dividing the condensing process into two parts of high-grade exergy and low-grade exergy and utilizing them separately is effective. That is the essential reason of generating boiling water beyond 100 °C as expected only through the single-stage compression cycle.

References

1.
Zhang
,
J.-F.
,
Qin
,
Y.
, and
Wang
,
C.-C.
,
2015
, “
Review on CO2 Heat Pump Water Heater for Residential Use in Japan
,”
Renew. Sustain. Energy Rev.
,
50
, pp.
1383
1391
. 10.1016/j.rser.2015.05.083
2.
Liu
,
M.
,
He
,
Y. E.
,
Zhang
,
H. F.
,
Su
,
H.
, and
Zhang
,
Z. W.
,
2020
, “
The Feasibility of Solar Thermal-Air Source Heat Pump Water Heaters in Renewable Energy Shortage Regions
,”
Energy
,
197
, p.
117189
. 10.1016/j.energy.2020.117189
3.
Xu
,
S.
,
Wang
,
Y.
,
Niu
,
J.
, and
Ma
,
G.
,
2020
, “
‘Coal-to-Electricity’ Project Is Ongoing in North China
,”
Energy
,
191
, p.
116525
. 10.1016/j.energy.2019.116525
4.
Wu
,
J.
,
Yang
,
Z.
,
Wu
,
Q.
, and
Zhu
,
Y.
,
2012
, “
Transient Behavior and Dynamic Performance of Cascade Heat Pump Water Heater With Thermal Storage System
,”
Appl. Energy
,
91
(
1
), pp.
187
196
. 10.1016/j.apenergy.2011.09.020
5.
Xu
,
Y.
,
Huang
,
Y.
,
Jiang
,
N.
,
Song
,
M.
,
Xie
,
X.
, and
Xu
,
X.
,
2019
, “
Experimental and Theoretical Study on an Air-Source Heat Pump Water Heater for Northern China in Cold Winter: Effects of Environment Temperature and Switch of Operating Modes
,”
Energy Build.
,
191
, pp.
164
173
. 10.1016/j.enbuild.2019.03.028
6.
Ma
,
X.
,
Zhang
,
Y.
,
Li
,
X.
,
Zou
,
H.
,
Deng
,
N.
,
Nie
,
J.
,
Yu
,
X.
,
Dong
,
S.
, and
Li
,
W.
,
2018
, “
Experimental Study for a High Efficiency Cascade Heat Pump Water Heater System Using a New Near-Zeotropic Refrigerant Mixture
,”
Appl. Therm. Eng.
,
138
, pp.
783
794
. 10.1016/j.applthermaleng.2017.12.124
7.
Wang
,
W.
,
Li
,
Y.
, and
Hu
,
B.
,
2020
, “
Real-Time Efficiency Optimization of a Cascade Heat Pump System Via Multivariable Extremum Seeking
,”
Appl. Therm. Eng.
,
176
, p.
115399
. 10.1016/j.applthermaleng.2020.115399
8.
Roh
,
C. W.
, and
Kim
,
M. S.
,
2014
, “
Effect of Vapor-Injection Technique on the Performance of a Cascade Heat Pump Water Heater
,”
Int. J. Refrig.
,
38
, pp.
168
177
. 10.1016/j.ijrefrig.2013.09.020
9.
Kim
,
D. H.
,
Park
,
H. S.
, and
Kim
,
M. S.
,
2013
, “
Optimal Temperature Between High and Low Stage Cycles for R134a/R410A Cascade Heat Pump Based Water Heater System
,”
Exp. Therm. Fluid. Sci.
,
47
, pp.
172
179
. 10.1016/j.expthermflusci.2013.01.013
10.
Neksa
,
P.
,
Rekstad
,
H.
,
Zakeri
,
G. R.
, and
Schiefloe
,
P. A.
,
1998
, “
CO2-Heat Pump Water Heater: Characteristics, System Design and Experimental Results
,”
Int. J. Refrig.
,
21
(
3
), pp.
172
179
. 10.1016/S0140-7007(98)00017-6
11.
Saikawa
,
M.
, and
Koyama
,
S.
,
2016
, “
Thermodynamic Analysis of Vapor Compression Heat Pump Cycle for Tap Water Heating and Development of CO2 Heat Pump Water Heater for Residential Use
,”
Appl. Therm. Eng.
,
106
, pp.
1236
1243
. 10.1016/j.applthermaleng.2016.06.105
12.
Zhu
,
Y.
,
Huang
,
Y.
,
Li
,
C.
,
Zhang
,
F.
, and
Jiang
,
P.-X.
,
2018
, “
Experimental Investigation on the Performance of Transcritical CO2 Ejector–Expansion Heat Pump Water Heater System
,”
Energy Convers. Manage.
,
167
, pp.
147
155
. 10.1016/j.enconman.2018.04.081
13.
Yang
,
Y.
,
Li
,
M.
,
Wang
,
K.
, and
Ma
,
Y.
,
2016
, “
Study of Multi-Twisted-Tube Gas Cooler for CO2 Heat Pump Water Heaters
,”
Appl. Therm. Eng.
,
102
, pp.
204
212
. 10.1016/j.applthermaleng.2016.03.123
14.
Li
,
Y. W.
,
Wang
,
R. Z.
,
Wu
,
J. Y.
, and
Xu
,
Y. X.
,
2007
, “
Experimental Performance Analysis and Optimization of a Direct Expansion Solar-Assisted Heat Pump Water Heater
,”
Energy
,
32
(
8
), pp.
1361
1374
. 10.1016/j.energy.2006.11.003
15.
Li
,
Y. W.
,
Wang
,
R. Z.
,
Wu
,
J. Y.
, and
Xu
,
Y. X.
,
2007
, “
Experimental Performance Analysis on a Direct-Expansion Solar-Assisted Heat Pump Water Heater
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2858
2868
. 10.1016/j.applthermaleng.2006.08.007
16.
Wang
,
D.
,
Lu
,
Y.
, and
Tao
,
L.
,
2017
, “
Thermodynamic Analysis of CO2 Blends With R41 as an Azeotropy Refrigerant Applied in Small Refrigerated Cabinet and Heat Pump Water Heater
,”
Appl. Therm. Eng.
,
125
, pp.
1490
1500
. 10.1016/j.applthermaleng.2017.07.009
17.
Wang
,
D.
,
Liu
,
Y.
,
Kou
,
Z.
,
Yao
,
L.
,
Lu
,
Y.
,
Tao
,
L.
, and
Xia
,
P.
,
2019
, “
Energy and Exergy Analysis of an Air-Source Heat Pump Water Heater System Using CO2/R170 Mixture as an Azeotropy Refrigerant for Sustainable Development
,”
Int. J. Refrig.
,
106
, pp.
628
638
. 10.1016/j.ijrefrig.2019.03.007
18.
Wang
,
J. F.
,
Brown
,
C.
, and
Cleland
,
D. J.
,
2018
, “
Heat Pump Heat Recovery Options for Food Industry Dryers
,”
Int. J. Refrig.
,
86
, pp.
48
55
. 10.1016/j.ijrefrig.2017.11.028
19.
Sun
,
S.
,
Guo
,
H.
, and
Gong
,
M.
,
2019
, “
Thermodynamic Analysis of Single-Stage Compression Air-Source Heat Pumps With Different Recuperation Ways for Large Temperature Lift
,”
Int. J. Refrig.
,
108
, pp.
91
102
. 10.1016/j.ijrefrig.2019.09.006
20.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
REFPROP
,”
NIST Standard Reference Database 23
.
21.
Tillner-Roth
,
R.
, and
Baehr
,
H. D.
,
1994
, “
An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures From 170 K to 455 K and Pressures up to 70 MPa
,”
J. Phys. Chem. Ref. Data
,
23
(
5
), pp.
657
729
. 10.1063/1.555958
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
23.
Wang
,
Y.
,
Ye
,
Z.
,
Song
,
Y.
,
Yin
,
X.
, and
Cao
,
F.
,
2020
, “
Energy, Exergy, Economic and Environmental Analysis of Refrigerant Charge in Air Source Transcritical Carbon Dioxide Heat Pump Water Heater
,”
Energy Convers. Manage.
,
223
, p.
113209
. 10.1016/j.enconman.2020.113209
You do not currently have access to this content.