Abstract

Aerodynamic heating levels on a typical inlet configuration of a scramjet engine are estimated using both standard design correlations and numerical flow simulations. The stagnation point heat flux is estimated using the Fay and Riddell formula. Aerodynamic heating over the inclined ramps is estimated using Van Driest method. Numerical flow simulations are carried out using a Reynolds averaged Navier–Stokes (RANS) solver coupled with energy equations and the Shear Stress Transport (SST) k–ω turbulence model. The aerodynamic heat flux estimates are validated with in-house measurements in a shock tunnel and for a scramjet flight experiment in the Mach number range 1.59 to 7.92. The emergence of a good agreement between them confirms the appropriateness of design correlations for heat flux estimation in scramjet inlets. The choice of simplification and appropriateness of design correlations to complex geometries demand critical assessment. Numerical flow simulations capture flow features and enable the identification of potential augmented heating zones, which will be critical for long-duration scramjet missions.

References

1.
Mutzman
,
R.
, and
Murphy
,
S.
,
2011
, “
X-51 Development: A Chief Engineer’s Perspective
,”
Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Key Speech
,
San Francisco, CA
,
Apr. 11–14
.
2.
Anderson
,
J. D.
, Jr.
,
2006
,
Hypersonic and High-Temperature Gas Dynamics
,
AIAA
,
VR
.
3.
Bertin
,
J. J.
,
1994
,
Hypersonic Aerothermodynamics
,
AIAA
,
OH
.
4.
Kumar
,
S.
, and
Shripad
,
P. M.
,
2016
, “
Aero-thermal Analysis of Lifting Body Configurations in Hypersonic Flow
,”
Acta Astronaut.
,
126
, pp.
382
394
.
5.
Babinsky
,
H.
, and
John
,
K. H.
,
2011
,
Shock Wave Boundary Layer Interactions
,
Cambridge University Press
,
NY
.
6.
Blankson
,
I. M.
,
1994
, “
Air-Breathing Hypersonic Cruise: Prospects for Mach 4–7 Waverider Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
104
115
.
7.
Kasen
,
S. D.
,
2013
, “
Thermal Management at Hypersonic Leading Edges
,”
Ph.D. dissertation
,
University of Virginia
,
Charlottesville, VA
.
8.
Iliff
,
K.
,
and Mary
,
W.
, and
S
,
F.
,
1995
, “
A Comparison of Hypersonic Vehicle Flight and Prediction Results
”, NASA-TM-104313.
9.
Wurster
,
K. E.
,
Christopher
,
J. R.
, and
Vincent
,
E. Z.
,
1999
, “
Engineering Aerothermal Analysis for X-34 Thermal Protection System Design
,”
J. Spacecr. Rockets
,
36
(
2
), pp.
216
228
.
10.
Hollis
,
B.
,
Thomas
,
R.
,
Scott
,
J. H.
,
Hamilton H
,
A. B.
,
Richard A
,
H.
,
and Stephen
,
T.
, and
A
,
J.
,
2001
, “
X-33 Computational Aeroheating Predictions and Comparisons With Experimental Data
,”
J. Spacecr. Rockets
,
38
(
5
), pp.
658
669
.
11.
Palmer
,
G.
, and
Polsky
,
S.
,
1999
, “
Heating Analysis of the Nosecap and Leading Edges of the X-34 Vehicle
,”
J. Spacecr. Rockets
,
36
(
2
), pp.
199
205
.
12.
Grasso
,
F.
, and
Marini
,
M.
,
1996
, “
Analysis of Hypersonic Shock-Wave Laminar Boundary-Layer Interaction Phenomena
,”
Comput. Fluids
,
25
(
6
), pp.
561
581
.
13.
John
,
B.
,
Vinayak
,
N. K.
, and
Ganesh
,
N.
,
2014
, “
Shock Wave Boundary Layer Interactions in Hypersonic Flows
,”
Int. J. Heat Mass Transfer
,
70
, pp.
81
90
.
14.
John
,
B.
, and
Kulkarni
,
V.
,
2014
, “
Effect of Leading Edge Bluntness on the Interaction of Ramp Induced Shock Wave With Laminar Boundary Layer at Hypersonic Speed
,”
Comput. Fluids
,
96
, pp.
177
190
.
15.
Savino
,
R.
, and
Paterna
,
D.
,
2005
, “
Blunted Cone-Flare in Hypersonic Flow
,”
Comput. Fluids
,
34
(
7
), pp.
859
875
.
16.
Marini
,
M.
,
2001
, “
Analysis of Hypersonic Compression Ramp Laminar Flows Under Sharp Leading Edge Conditions
,”
Aerosp. Sci. Technol.
,
5
(
4
), pp.
257
271
.
17.
Chawner
,
J. R.
,
Spragle
,
G. S.
, and
Matus
,
R. J.
,
1989
, “
Calibration of CFD Methods for High Mach Number Aeroengine Flowfields
,”
J. Eng. Gas Turb. Power
,
111
(
1
), pp.
24
30
.
18.
Qu
,
F.
,
Jiaojiao
,
C.
,
Di
,
S.
,
Junqiang
,
B.
, and
Guang
,
Z.
,
2019
, “
A Grid Strategy for Predicting the Space Plane's Hypersonic Aerodynamic Heating Loads
,”
Aerosp. Sci. Technol.
,
86
, pp.
659
670
.
19.
Gnoffo
,
P. A.
,
Scott
,
A. B.
, and
John
,
W. V. N.
,
2013
, “
Uncertainty Assessments of Hypersonic Shock Wave-Turbulent Boundary-Layer Interactions at Compression Corners
,”
J. Spacecr. Rockets
,
50
(
1
), pp.
69
95
.
20.
Fay
,
J. A.
, and
Riddell
,
R. F.
,
1958
, “
Theory of Stagnation Point Heat Transfer in Dissociated Air
,”
J. Aerosp. Sci.
,
25
(
2
), pp.
73
85
.
21.
Van Driest
,
E. R.
,
1952
, “
Investigation of Laminar Boundary Layer in Compressive Fluids using the Crocco Method
”, NACA Technical Note 2597.
22.
Van Driest
,
E. R.
,
1951
, “
Turbulent Boundary Layer in Compressible Fluids
,”
J. Aerosp. Sci.
,
18
(
3
), pp.
145
160
.
23.
Garrett
,
L. B.
, and
Joan
,
I. P.
,
1970
, “
A General Transient Heat-Transfer Computer Program for Thermally Thick Walls
”, NASA TM X-2058.
24.
Van Driest
,
E. R.
,
1956
, “
The Problem of Aerodynamic Heating
,”
Aeronaut. Eng. Rev.
,
15
(
10
), pp.
26
41
.
25.
Landsberg
,
W. O.
,
Vincent
,
W.
,
Michael
,
K. S.
, and
Ananthanarayanan
,
V.
,
2018
, “
Performance of High Mach Number Scramjets-Tunnel vs Flight
,”
Acta Astronaut.
,
146
, pp.
103
110
.
26.
Pasha
,
A. A.
, and
Khalid
,
A. J.
,
2020
, “
Numerical Simulation of Compression Corner Flows at Mach Number 9
,”
Chin. J. Aeronaut.
,
33
(
6
), pp.
1611
1624
.
27.
Grisham
,
J. R.
,
Brian
,
H. D.
, and
Frank
,
K. L.
,
2018
, “
Incipient Separation in Laminar Ramp-Induced Shock-Wave/Boundary-Layer Interactions
,”
AIAA J.
,
56
(
2
), pp.
524
531
.
28.
Brown
,
J.
,
2011
, “
Shock Wave Impingement on Boundary Layers at Hypersonic Speeds: Computational Analysis and Uncertainty
,”
Proceedings of 42nd AIAA Thermophysics Conference
, AIAA 2011–3143, HI.
29.
ANSYS Fluent User's Guide, 2019, ANSYS Inc.
30.
Goldberg
,
U.
,
2001
, “
Hypersonic Flow Heat Transfer Prediction Using Single Equation Turbulence Models
,”
ASME J. Heat Transfer
,
123
(
1
), pp.
65
69
.
31.
Hansen
,
C. F.
,
1958
, “
Approximations for the Thermodynamic and Transport Properties of High-Temperature Air
”, NASA TR R-50.
32.
Srinivasan
,
K.
,
Praveen
,
K. M.
,
Kumar
,
A.
,
Desikan
,
S. L. N.
, and
Murugan
,
B.
,
2018
, “
Supersonic Combustion of a Scramjet Engine Using Hydrogen Fuel in Shock Tunnel
,”
AIAA J.
,
56
(
9
), pp.
3600
3609
.
33.
Praveen
,
K. M.
,
Srinivasan
,
K.
, and
Kumar
,
A.
,
2016
, “
Heat Flux Measurement on a Flight Scale Scramjet Model in Shock Tunnel
,”
Proceedings of the 6th International and 43rd National Conference on Fluid Mechanics and Fluid Power, FMTP206-Paper No. 310
,
UP, India
.
34.
Desikan
,
S. L. N.
,
Suresh
,
K.
,
Srinivasan
,
K.
, and
Raveendran
,
P. G.
,
2016
, “
Fast Response Co-axial Thermocouple for Short Duration Impulse Facilities
,”
Appl. Therm. Eng.
,
96
, pp.
48
56
.
35.
Srinivasan
,
K.
,
Desikan
,
S. L. N.
,
Saravanan
,
R.
,
Kumar
,
A.
, and
Praveen
,
K. M.
,
2016
, “
Fore-Body and Base Heat Flux Measurements on a Typical Crew Module in Short Duration Impulse Facilities
,”
Appl. Therm. Eng.
,
103
, pp.
842
854
.
36.
Ram Prabhu
,
M.
,
Radhakrishnan
,
T. V.
,
Chacko
,
M. J.
,
Sarat
,
B. C.
, and
Gnanasekar
,
S.
,
2018
, “
Aerothermal Design and Assessment of Scramjet Engine Flow Duct and Comparison With Flight Data
,”
J. Aerosp. Sci. Technol.
,
70
(
3A
), pp.
227
233
.
37.
Ram Prabhu
,
M.
,
Radhakrishnan
,
T. V.
, and
Chacko
,
M. J.
,
2017
, “
Heating Levels on Scramjet Intake and Combustor Duct
,”
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference
, IHMTC-2017-01-0650,
Hyderabad, India
.
You do not currently have access to this content.