Abstract

For a rectangular channel flow, a variant of delta winglet vortex generator (VG) in common flow up (CFU) orientation is presented to enhance the thermal performance factor by decreasing the friction losses. The new vortex generator is a simple reversal of a standard CFU orientation such that the leading edge and suction side of the conventional CFU orientation of the winglet become the trailing edge and pressure side for the reverse common flow up (RCFU) orientation of the winglet, respectively. Numerical simulations were carried out for a three-dimensional, steady, laminar, and incompressible rectangular channel flow with and without the two VG configurations. Performance analysis was done for global Nusselt number and friction factor for different inter-winglet spacings of the VG pair at a Reynolds number of 1478. An increase of 2.3% in the thermal enhancement factor was achieved in RCFU compared to CFU orientation at an inter-winglet spacing equal to 0.02 times the channel height. At the highest inter-winglet spacing equal to 0.6 times the channel height, the CFU orientation exhibited a gain of 3.2% in the enhancement factor over the RCFU orientation. Heat transfer downstream of the vortex generator was shown to be impacted in the reverse configuration (RCFU) due to stronger vortex formation compared to a standard CFU configuration at the least inter-winglet spacing.

References

1.
Bergles
,
A. E.
,
2011
, “
Recent Developments in Enhanced Heat Transfer
,”
Heat Mass Transfer
,
47
(
8
), pp.
1001
1008
.
2.
Siddique
,
M.
,
Khaled
,
A.-R. A.
,
Abdulhafiz
,
N. I.
, and
Boukhary
,
A. Y.
,
2010
, “
Recent Advances in Heat Transfer Enhancements: A Review Report
,”
Int. J. Chem. Eng.
,
2010
, pp.
1
28
.
3.
Webb
,
R. L.
, and
Kim
,
N.-H.
,
2004
, “Principles of Enhanced Heat Transfer,”
Garl. Sci.
,
New York
.
4.
Jacobi
,
A.
, and
Shah
,
R.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid. Sci.
,
11
(
3
), pp.
295
309
.
5.
Fiebig
,
M.
,
1997
, “
Vortices and Heat Transfer
,”
J. Appl. Math. Mech.
,
77
(
1
), pp.
3
18
.
6.
Brockmeier
,
U.
,
Fiebig
,
M.
,
Güntermann
,
T.
, and
Mitra
,
N. K.
,
1989
, “
Heat Transfer Enhancement in Fin-Plate Heat Exchangers by Wing Type Vortex Generators
,”
Chem. Eng. Technol.—CET
,
12
(
1
), pp.
288
294
.
7.
Fiebig
,
M.
,
Kallweit
,
P.
,
Mitra
,
N.
, and
Tiggelbeck
,
S.
,
1991
, “
Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow
,”
Exp. Therm. Fluid Sci.
,
4
(
1
), pp.
103
114
.
8.
Biswas
,
G.
,
Torii
,
K.
,
Fujii
,
D.
, and
Nishino
,
K.
,
1996
, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3441
3451
.
9.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1994
, “
Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
ASME Heat Transfer
,
116
(
4
), pp.
880
885
.
10.
Fiebig
,
M.
,
Valencia
,
A.
, and
Mitra
,
N.
,
1993
, “
Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid. Sci.
,
7
(
4
), pp.
287
295
.
11.
Fiebig
,
M.
,
Brockmeier
,
U.
,
Mitra
,
N. K.
, and
Termann
,
T. G.
,
1989
, “
Structure of Velocity and Temperature Fields in Laminar Channel Flows With Longitudinal Vortex Generators
,”
Numer. Heat Transfer, Part A
15
(
3
), pp.
281
302
.
12.
Torii
,
K.
,
Kwak
,
K.
, and
Nishino
,
K.
,
2002
, “
Heat Transfer Enhancement Accompanying Pressure-Loss Reduction With Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3795
3801
.
13.
Fiebig
,
M.
,
Chen
,
Y.
,
Grosse-Gorgemann
,
A.
, and
Mitra
,
N. K.
,
1995
, “
Conjugate Heat Transfer of a Finned Tube Part B: Heat Transfer Augmentation and Avoidance of Heat Transfer Reversal by Longitudinal Vortex Generators
,”
Numer. Heat Transfer, Part A
,
28
(
2
), pp.
147
155
.
14.
Tiggelbeck
,
S.
,
Mitra
,
N.
, and
Fiebig
,
M.
,
1992
, “
Flow Structure and Heat Transfer in a Channel With Multiple Longitudinal Vortex Generators
,”
Exp. Therm. Fluid. Sci.
,
5
(
4
), pp.
425
436
.
15.
Zhu
,
J.
,
Mitra
,
N.
, and
Fiebig
,
M.
,
1993
, “
Effects of Longitudinal Vortex Generators on Heat Transfer and Flow Loss in Turbulent Channel Flows
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2339
2347
.
16.
Yanagihara
,
J. I.
, and
Torii
,
K.
,
1992
, “
Enhancement of Laminar Boundary Layer Heat Transfer by a Vortex Generator
,”
JSME Int. J. Ser. 2 Fluids Eng. Heat Transf. Power Combust. Thermophys. Prop.
,
35
(
3
), pp.
400
405
.
17.
Gentry
,
M.
, and
Jacobi
,
A.
,
1997
, “
Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions With the Boundary Layer
,”
Exp. Therm. Fluid Sci.
,
14
(
3
), pp.
231
242
.
18.
Biswas
,
G.
,
Mitra
,
N.
, and
Fiebig
,
M.
,
1994
, “
Heat Transfer Enhancement in fin-Tube Heat Exchangers by Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
283
291
.
19.
Khanjian
,
A.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2017
, “
Effect of Rectangular Winglet Pair Roll Angle on the Heat Transfer Enhancement in Laminar Channel Flow
,”
Int. J. Therm. Sci.
,
114
, pp.
1
14
.
20.
Tian
,
L.
,
He
,
Y.
,
Tao
,
Y.
, and
Tao
,
W.
,
2009
, “
A Comparative Study on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchanger With Punched Delta Winglets in Staggered and In-Line Arrangements
,”
Int. J. Therm. Sci.
48
(
9
), pp.
1765
1776
.
21.
Agarwal
,
S.
, and
Sharma
,
R. P.
,
2016
, “
Numerical Investigation of Heat Transfer Enhancement Using Hybrid Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031007
.
22.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2006
, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
9
), pp.
1156
1167
.
23.
He
,
J.
,
Liu
,
L.
, and
Jacobi
,
A. M.
,
2010
, “
Air-Side Heat-Transfer Enhancement by a New Winglet-Type Vortex Generator Array in a Plain-Fin Round-Tube Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
7
), p. 071801.
24.
He
,
Y.-L.
,
Chu
,
P.
,
Tao
,
W.-Q.
,
Zhang
,
Y.-W.
, and
Xie
,
T.
,
2013
, “
Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers With Rectangular Winglet-Type Vortex Generators
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
770
783
.
25.
Li
,
L.
,
Du
,
X.
,
Zhang
,
Y.
,
Yang
,
L.
, and
Yang
,
Y.
,
2015
, “
Numerical Simulation on Flow and Heat Transfer of Fin-and-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Int. J. Therm. Sci.
,
92
, pp.
85
96
.
26.
Sinha
,
A.
,
Chattopadhyay
,
H.
,
Iyengar
,
A. K.
, and
Biswas
,
G.
,
2016
, “
Enhancement of Heat Transfer in a Fin-Tube Heat Exchanger Using Rectangular Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
101
, pp.
667
681
.
27.
Khan
,
T. A.
, and
Li
,
W.
,
2017
, “
Optimal Configuration of Vortex Generator for Heat Transfer Enhancement in a Plate-Fin Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021013
.
28.
Saha
,
P.
,
Biswas
,
G.
, and
Sarkar
,
S.
,
2014
, “
Comparison of Winglet-Type Vortex Genrators Periodically Deployed in a Plate-Fin Heat Exchanger—A Synergy Based Analysis
,”
Int. J. Heat Mass Transfer
,
74
, pp.
292
305
.
29.
Khoshvaght-Aliabadi
,
M.
,
Zangouei
,
S.
, and
Hormozi
,
F.
,
2015
, “
Performance of a Plate-Fin Heat Exchanger With Vortex-Generator Channels: 3D-CFD Simulation and Experimental Validation
,”
Int. J. Therm. Sci.
,
88
, pp.
180
192
.
30.
Lei
,
Y.
,
Zheng
,
F.
,
Song
,
C.
, and
Lyu
,
Y.
,
2017
, “
Improving the Thermal Hydraulic Performance of a Circular Tube by Using Punched Delta-Winglet Vortex Genera-tors
,”
Int. J. Heat Mass Transfer
,
111
, pp.
299
311
.
31.
Ali
,
S.
,
Habchi
,
C.
,
Menanteau
,
S.
,
Lemenand
,
T.
, and
Harion
,
J.-L.
,
2017
, “
Three-Dimensional Numerical Study of Heat Transfer and Mixing Enhancement in a Circular Pipe Using Self-Sustained Oscillating Flexible Vorticity Generators
,”
Chem. Eng. Sci.
,
162
, pp.
152
174
.
32.
Zhai
,
C.
,
Islam
,
M.
,
Alam
,
M.
,
Simmons
,
R.
, and
Barsoum
,
I.
,
2019
, “
Parametric Study of Major Factors Affecting Heat Transfer Enhancement in a Circular Tube With Vortex Generator Pairs
,”
Appl. Therm. Eng.
,
153
, pp.
330
340
.
33.
Sun
,
Z.
,
Zhang
,
K.
,
Li
,
W.
,
Chen
,
Q.
, and
Zheng
,
N.
,
2020
, “
Investigations of the Turbulent Thermal-Hydraulic Performance in Circular Heat Exchanger Tubes With Multiple Rectangular Winglet Vortex Generators
,”
Appl. Therm. Eng.
,
168
, p.
114838
.
34.
Habchi
,
C.
, and
Harion
,
J.-L.
,
2014
, “
Residence Time Distribution and Heat Transfer in Circular Pipe Fitted With Longitudinal Rectangular Wings
,”
Int. J. Heat Mass Transfer
,
74
, pp.
13
24
.
35.
Eiamsa-ard
,
S.
,
Wongcharee
,
K.
,
Eiamsa-ard
,
P.
, and
Thianpong
,
C.
,
2010
, “
Heat Transfer Enhancement in a Tube Using Delta-Winglet Twisted Tape Inserts
,”
Appl. Therm. Eng.
,
30
(
4
), pp.
310
318
.
36.
Li
,
H.-Y.
,
Chen
,
C.-L.
,
Chao
,
S.-M.
, and
Liang
,
G.-F.
,
2013
, “
Enhancing Heat Transfer in a Plate-Fin Heat Sink Using Delta Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
67
, pp.
666
677
.
37.
Li
,
H.-Y.
,
Liao
,
W.-R.
,
Li
,
T.-Y.
, and
Chang
,
Y.-Z.
,
2017
, “
Application of Vortex Generators to Heat Transfer Enhancement of a Pin-Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
112
, pp.
940
949
.
38.
Aylı
,
E.
, and
Bayer
,
Ö.
,
2019
, “
Optimization of Vortex Promoter Parameters to Enhance Heat Transfer Rate in Electronic Equipment
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021001
.
39.
Chen
,
C.
,
Teng
,
J.-T.
,
Cheng
,
C.-H.
,
Jin
,
S.
,
Huang
,
S.
,
Liu
,
C.
,
Lee
,
M.-T.
,
Pan
,
H.-H.
, and
Greif
,
R.
,
2014
, “
A Study on Fluid Flow and Heat Transfer in Rectangular Microchannels With Various Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
69
, pp.
203
214
.
40.
Datta
,
A.
,
Sanyal
,
D.
, and
Das
,
A. K.
,
2016
, “
Numerical Investigation of Heat Transfer in Microchannel Using Inclined Longitudinal Vortex Generator
,”
Appl. Therm. Eng.
,
108
, pp.
1008
1019
.
41.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2018
, “
Application of Jets and Vortex Generators to Improve Air-Cooling and Temperature Uniformity in a Simple Battery Pack
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021005
.
42.
Oneissi
,
M.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2016
, “
Novel Design of Delta Winglet Pair Vortex Generator for Heat Transfer Enhancement
,”
Int. J. Therm. Sci.
,
109
, pp.
1
9
.
43.
Oneissi
,
M.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2018
, “
Inclination Angle Optimization for “Inclined Projected Winglet Pair” Vortex Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011014
.
44.
Kashyap
,
U.
,
Das
,
K.
, and
Debnath
,
B. K.
,
2018
, “
Effect of Surface Modification of a Rectangular Vortex Generator on Heat Transfer Rate From a Surface to Fluid
,”
Int. J. Therm. Sci.
,
127
, pp.
61
78
.
45.
Kashyap
,
U.
,
Das
,
K.
, and
Debnath
,
B. K.
,
2019
, “
Numerical and Experimental Study of the Effect of Secondary Surfaces Fixed Over a Rectangular Vortex Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061003
.
46.
Kashyap
,
U.
,
Das
,
K.
,
Debnath
,
B. K.
,
Kashyap
,
U.
, and
Saha
,
S. K.
,
2020
, “
Numerical Study on Effect of Secondary Surface on Rectangular Vortex Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
011005
.
47.
Samadifar
,
M.
, and
Toghraie
,
D.
,
2018
, “
Numerical Simulation of Heat Transfer Enhancement in a Plate-Fin Heat Exchanger Using a New Type of Vortex Generators
,”
Appl. Therm. Eng.
,
133
, pp.
671
681
.
48.
Zhou
,
G.
, and
Feng
,
Z.
,
2014
, “
Experimental Investigations of Heat Transfer Enhancement by Plane and Curved Winglet Type Vortex Generators With Punched Holes
,”
Int. J. Therm. Sci.
,
78
, pp.
26
35
.
49.
Wang
,
W.
,
Bao
,
Y.
, and
Wang
,
Y.
,
2015
, “
Numerical Investigation of a Finned-Tube Heat Exchanger With Novel Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
86
, pp.
27
34
.
50.
Awais
,
M.
, and
Bhuiyan
,
A. A.
,
2018
, “
Heat Transfer Enhancement Using Different Types of Vortex Generators (VGs): A Review on Experimental and Numerical Activities
,”
Ther. Sci. Eng. Prog.
,
5
, pp.
524
545
.
52.
Shah
,
R. K.
, and
Sekuli
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
You do not currently have access to this content.