Abstract

In this Part II of the paper, a numerical study has been performed to validate the multiphase computational fluid dynamics (CFD) model by comparing its results to the experimental data of an air/mist film cooling study presented in Part I. The complete experimental test section was simulated including all the details such as five holes, side walls effect, partially opened top wall, the conjugate bottom wall, the initial droplet distributions from the actual data, and the long boundary layer developing region upstream of the cooling holes. The effects of different particle distributions, the breakup and coalescence models, and the conjugate wall on the adiabatic film cooling effectiveness were investigated. The multiphase CFD model employs an Eulerian–Lagrangian approach. The Eulerian method is used for the continuous phase including air and water vapor, and the Lagrangian method in terms of the discrete phase model (DPM) is used to simulate the dispersed phase of liquid droplets in a continuous phase of air–water vapor mixture. The overall consistency between the computational prediction and experimental data is within 0.2% for the air-only case and 7% for the mist case. The results showed that considering the wall using the conjugate heat transfer technique significantly provided better agreement with the experimental data than without including the wall. The non-uniform particle distribution provided better agreement with the experimental results near the film cooling hole exit.

References

1.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
3.
Ito
,
S. S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
J. Eng. Power
,
100
(
3
), pp.
476
481
.
4.
Han
,
J. C.
, and
Dutta
,
S.
,
2001
, “
Recent Developments in Turbine Blade Internal Cooling
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
162
178
.
5.
Dunn
,
M. G.
,
1986
, “
Heat Flux Measurement for a Rotor of a Full Stage Turbine. Part I: Time Averaged Results
,”
ASME J. Turbomach.
,
108
(
1
), pp.
90
97
.
6.
Dunn
,
M. G.
,
George
,
W. K.
,
Rae
,
W. J.
,
Woodward
,
S. H.
,
Moller
,
J. C.
, and
Seymour
,
J. P.
,
1986
, “
Heat Flux Measurement for a Rotor of a Full Stage Turbine, Part II: Description of Analysis Technique and Typical Time-Resolved Measurements
,”
ASME J. Turbomach.
,
108
(
1
), pp.
98
107
.
7.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
.
8.
Takagi
,
T.
, and
Ogasawara
,
M.
,
1974
, “
Some Characteristics of Heat and Mass Transfer in Binary Mist Flow
,”
Proceedings of 5th International Heat Transfer Conference
,
Tokyo
, Sept. 3–7,
Vol. 4
, pp.
350
354
.
9.
Terekhov
,
V. I.
, and
Pakhomov
,
M. A.
,
2004
, “
The Thermal Efficiency of Near-Wall Gas-Droplets Screens, Part I: Numerical Modeling
,”
Int. J. Heat Mass Transfer.
,
48
(
9
), pp.
1747
1759
.
10.
Terekhov
,
V. I.
, and
Pakhomov
,
M. A.
,
2009
, “
Film-Cooling Enhancement of the Mist Vertical Wall Jet on the Cylindrical Channel Surface With Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
6
), p. 062201.
11.
Nirmalan
,
N. V.
,
Weaver
,
J. A.
, and
Hylton
,
L. D.
,
1998
, “
An Experimental Study of Turbine Vane Heat Transfer With Water–Air Cooling
,”
ASME. J. Turbomach.
,
120
(
1
), pp.
50
60
.
12.
Jiang
,
Y.
,
Zheng
,
Q.
,
Dong
,
P.
,
Yue
,
G. Q.
, and
Gao
,
J.
,
2014
, “
Numerical Simulation on Turbine Blade Leading-Edge High-Efficiency Film Cooling by the Application of Water Mist
,”
Numer. Heat Transfer, Part A: Appl.
,
66
(
12
), pp.
1341
1364
.
13.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a Heated Horizontal Tube Part I: Experimental System
,”
ASME J. Turbomach.
,
122
(
4
), pp.
360
365
.
14.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a Heated Horizontal Tube: Part II: Results and Modeling
,”
ASME J. Turbomach.
,
122
(
4
), pp.
366
374
.
15.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a 180-Degree Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
4
), pp.
749
756
.
16.
Zhao
,
L.
, and
Wang
,
T.
,
2014
, “
An Experimental Study of Mist/Air Film Cooling on a Flat Plate With Application to Gas Turbine Airfoils—Part I: Heat Transfer
,”
ASME. J. Turbomach.
,
136
(
7
), p.
071006
.
17.
Zhao
,
L.
, and
Wang
,
T.
,
2014
, “
An Experimental Study of Mist/Air Film Cooling With Application to Gas Turbine Airfoils- Part 2: Droplet Measurement
,”
ASME J. Turbomach.
,
136
(
7
), p.
071007
.
18.
Ragab
,
R.
, and
Wang
,
T.
,
2018
, “
An Experimental Study of Mist Film Cooling With Fan-Shaped Holes on an Extended Flat Plate—Part 1: Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
4
), p.
042201
.
19.
Ragab
,
R.
, and
Wang
,
T.
,
2018
, “
An Experimental Study of Mist Film Cooling With Fan-Shaped Holes on an Extended Flat Plate—Part 2: Two-Phase Flow Measurements and Droplet Dynamics
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
4
), p.
042202
.
20.
Ragab
,
R.
, and
Wang
,
T.
,
2012
, “
Investigation of Applicability of Transporting Water Mist for Cooling Turbine Vanes
,”
ASME Paper No. GT2012-70110, Proceedings of ASME Turbo Expo2012
,
Copenhagen, Denmark
,
June 6–10, 2012
.
21.
Dhanasekaran
,
T. S.
, and
Wang
,
T.
,
2012
, “
Computational Model Validation and Prediction of Mist/Steam Cooling in a 180-Degree Bend Tubes
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3818
3828
.
22.
Dhanasekaran
,
T. S.
, and
Wang
,
T.
,
2012
, “
Simulation of Mist Film Cooling on Rotating Gas Turbine Blades
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
1
), p.
011501
.
23.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London, England
.
24.
Wolfstein
,
M.
,
1969
, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.
25.
Fluent Manual
. Version 20, 2020, Ansys Inc.
26.
Li
,
X.
, and
Wang
,
T.
,
2005
, “
Effects of Various Modeling Schemes on Mist Film Cooling
,”
ASME Paper No. IMECE-81780, Presented at the ASME International Mechanical Engineering Congress and Exhibition
,
Orlando, Florida
,
November 2005
.
27.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The Tab Method for Numerical Calculation of Spray Droplet Breakup
,” SAE Technical Paper No. 872089.
28.
O'Rourke
,
P. J.
,
1981
,
Collective Drop Effects on Vaporizing Liquid Sprays
,
Princeton University
,
Princeton, NJ
.
You do not currently have access to this content.