Abstract

The inverse heat transfer problem (IHTP) is a central task for estimating parameters in heat transfer. It is ill-posedness that is characterized by instability and non-uniqueness of the solution. Recently, novel algorithms using deep learning (DL) and neural networks have been applied to various sparse data in the IHTP. In order to overcome the optimization problem of input nodes under sparse data, we try to use the overall data of the target as the basis for inversion. In this work, we used a multiple regression convolutional neural network (MRCNN) to estimate multi-parameters in the IHTP. Computational fluid dynamics and DL are fused to provide datasets for training of the proposed model. The proposed model was verified by experiments with a cubic cavity. Additionally, the MRCNN model was used to predict the different parameters of the more complex armored vehicle model. The results showed that the model has good prediction accuracy for estimating multi-parameters on different datasets. These attempts of introducing convolutional neural network to the IHTP in the present study were successful and it was significant for the study of the IHTP of estimating multi-parameters.

References

1.
Monde
,
M.
,
2000
, “
Analytical Method in Inverse Heat Transfer Problem Using Laplace Transform Technique
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3965
3975
.
2.
Beck
,
J. V.
,
1979
, “
Criteria for Comparison of Methods of Solution of the Inverse Heat Conduction Problem
,”
Nucl. Eng. Des.
,
53
(
1
), pp.
11
22
.
3.
Beck
,
J. V.
,
1970
, “
Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
703
716
.
4.
Yang
,
F.
, and
Fu
,
C.-L.
,
2010
, “
A Simplified Tikhonov Regularization Method for Determining the Heat Source
,”
Appl. Math. Model.
,
34
(
11
), pp.
3286
3299
.
5.
Okamoto
,
K.
, and
Li
,
B. Q.
,
2007
, “
A Regularization Method for the Inverse Design of Solidification Processes With Natural Convection
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4409
4423
.
6.
Engl
,
H. W.
, and
Zou
,
J.
,
2000
, “
A New Approach to Convergence Rate Analysis of Tikhonov Regularization for Parameter Identification in Heat Conduction
,”
Inverse Probl.
,
16
(
6
), pp.
1907
1923
.
7.
Zhao
,
Z.
,
Xie
,
O.
,
Meng
,
Z.
, and
You
,
L.
,
2014
, “
Determination of an Unknown Source in the Heat Equation by the Method of Tikhonov Regularization in Hilbert Scales
,”
J. Appl. Math. Phys.
,
2
(
2
), pp.
10
17
.
8.
Yang
,
Y.-C.
, and
Chen
,
W.-L.
,
2011
, “
A Nonlinear Inverse Problem in Estimating the Heat Flux of the Disc in a Disc Brake System
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2439
2448
.
9.
Shao-Pei
,
H. C.-H. W.
,
1999
, “
A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method
,”
Int. J. Heat Mass Transfer
,
42
(
18
), pp.
3171
3181
.
10.
Huang
,
C.-H.
, and
Hsiao
,
J.-H.
,
2003
, “
An Inverse Design Problem in Determining the Optimum Shape of Spine and Longitudinal Fins
,”
Numer. Heat Transfer Part A
,
43
(
2
), pp.
155
177
.
11.
Huang
,
C. H.
, and
Chen
,
C. W.
,
2015
, “
A Boundary Element-Based Inverse-Problem in Estimating Transient Boundary Conditions With Conjugate Gradient Method
,”
Int. J. Numer. Methods Eng.
,
42
(
5
), pp.
943
965
.
12.
Wang
,
X.
,
Wang
,
G.
,
Chen
,
H.
, and
Zhang
,
L.
,
2017
, “
Real-Time Temperature Field Reconstruction of Boiler Drum Based on Fuzzy Adaptive Kalman Filter and Order Reduction
,”
Int. J. Therm. Sci.
,
113
(
5
), pp.
145
153
.
13.
Wang
,
K.
,
Wang
,
G.
,
Chen
,
H.
, and
Zhu
,
L.
,
2014
, “
Estimating Thermal Boundary Conditions of Boiler Membrane Water-Wall Using Decentralized Fuzzy Inference With Sensitivity Weighting
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
309
317
.
14.
Liu
,
F.-B.
,
2008
, “
A Modified Genetic Algorithm for Solving the Inverse Heat Transfer Problem of Estimating Plan Heat Source
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3745
3752
.
15.
Lee
,
K. H.
,
Baek
,
S. W.
, and
Kim
,
K. W.
,
2008
, “
Inverse Radiation Analysis Using Repulsive Particle Swarm Optimization Algorithm
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2772
2783
.
16.
Liu
,
F.-B.
,
2011
, “
A Hybrid Method for the Inverse Heat Transfer of Estimating Fluid Thermal Conductivity and Heat Capacity
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
718
724
.
17.
Horský
,
M. R. J.
,
1995
, “
Usage of Neural Network for Coupled Parameter and Function Specification Inverse Heat Conduction Problem
,”
Int. Commun. Heat Mass Transfer
,
22
(
5
), pp.
661
670
.
18.
Yang
,
K.-T.
,
2008
, “
Artificial Neural Networks (ANNs): A New Paradigm for Thermal Science and Engineering
,”
ASME J. Heat Transfer
,
130
(
9
), p.
093001
.
19.
Krejsa
,
J.
,
Woodbury
,
K. A.
,
Ratliff
,
J. D.
, and
Raudensky
,
M.
,
1999
, “
Assessment of Strategies and Potential for Neural Networks in the Inverse Heat Conduction Problem
,”
Inverse Probl. Eng.
,
7
(
3
), pp.
197
213
.
20.
Kalogirou
,
S. A.
,
2006
, “
Prediction of Flat-Plate Collector Performance Parameters Using Artificial Neural Networks
,”
Sol. Energy
,
80
(
3
), pp.
248
259
.
21.
Deng
,
S.
, and
Hwang
,
Y.
,
2006
, “
Applying Neural Networks to the Solution of Forward and Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4732
4750
.
22.
Chanda
,
S.
,
Balaji
,
C.
,
Venkateshan
,
S. P.
, and
Yenni
,
G. R.
,
2017
, “
Estimation of Principal Thermal Conductivities of Layered Honeycomb Composites Using ANN–GA Based Inverse Technique
,”
Int. J. Therm. Sci.
,
111
(
5
), pp.
423
436
.
23.
Edalatifar
,
M.
,
Tavakoli
,
M. B.
,
Ghalambaz
,
M.
, and
Setoudeh
,
F.
,
2020
, “
Using Deep Learning to Learn Physics of Conduction Heat Transfer
,”
J. Therm. Anal. Calorim.
24.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
25.
Li
,
H.
,
Schwab
,
J.
,
Antholzer
,
S.
, and
Haltmeier
,
M.
,
2020
, “
NETT: Solving Inverse Problems With Deep Neural Networks
,”
Inverse Probl.
,
36
(
6
).
26.
Tamaddon-Jahromi
,
H. R.
,
Chakshu
,
N. K.
,
Sazonov
,
I.
,
Evans
,
L. M.
,
Thomas
,
H.
, and
Nithiarasu
,
P.
,
2020
, “
Data-Driven Inverse Modelling Through Neural Network (Deep Learning) and Computational Heat Transfer
,”
Comput. Methods Appl. Mech. Eng.
,
369
.
27.
Niu
,
Z.
,
Zhou
,
M.
,
Wang
,
L.
,
Gao
,
X.
, and
Hua
,
G.
,
2016
, “
Ordinal Regression With Multiple Output CNN for Age Estimation
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, pp.
4920
4928
.
28.
Wu
,
H.
,
Zhang
,
H.
,
Hu
,
G.
, and
Qiao
,
R.
,
2020
, “
Deep Learning-Based Reconstruction of the Structure of Heterogeneous Composites From Their Temperature Fields
,”
AIP Adv.
,
10
(
4
), p.
045037
.
29.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
30.
Benediktsson
,
J. A.
,
Bovolo
,
F.
,
Bruzzone
,
L.
,
Menasalvas
,
E.
,
Rodriguéz-Esparragón
,
D.
,
Lillo-Saavedra
,
M. F.
,
Gonzalo-Martín
,
C.
, and
García-Pedrero
,
A. M.
,
2017
, “
Convolutional Neural Networks for Estimating Spatially Distributed Evapotranspiration
,”
Image and Signal Processing for Remote Sensing XXIII
,
Warsaw, Poland
,
Oct. 4
.
31.
Wu
,
H.
,
Fang
,
W. Z.
,
Kang
,
Q.
,
Tao
,
W. Q.
, and
Qiao
,
R.
,
2019
, “
Predicting Effective Diffusivity of Porous Media From Images by Deep Learning
,”
Sci. Rep.
,
9
(
1
), p.
20387
.
32.
Wang
,
Y.
,
Wang
,
W.
, and
Li
,
Q.
,
2018
, “
Crack Identification of Infrared Thermal Imaging Steel Sheet Based on Convolutional Neural Network
,”
MATEC Web of Conferences
,
Shanghai China
,
Oct. 12
, p.
232
.
33.
Guo
,
X.
,
Li
,
W.
, and
Iorio
,
F.
,
2016
, “
Convolutional Neural Networks for Steady Flow Approximation
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, pp.
481
490
.
34.
Chang
,
C. W.
, and
Dinh
,
N. T.
,
2019
, “
Classification of Machine Learning Frameworks for Data-Driven Thermal Fluid Models
,”
Int. J. Therm. Sci.
,
13
(
5
), pp.
481
490
.
You do not currently have access to this content.