Abstract

An innovative methodology and a virtual test bench (VTB) are proposed to support the design of water heaters’ control strategies. This platform allows to speed up the development and evaluation of control systems even before the existence of prototypes or real test environments. By simulating the environmental conditions and the state of the different device components, it will be possible to detect and correct possible initial errors in the control system design which can be time consuming and costly due to subsequent modifications to the system or equipment components. The architecture of the proposed system establishes four operating modes: open-loop data acquisition, real-time simulation, hardware-in-the-loop simulation, and test of the complete real system, the incorporation of these functionalities in the same platform is not reported in the literature for domestic water heaters. The virtual test bench was designed to accommodate different water heaters including, but not limited to, gas, electric, and heat pumps, for instantaneous hot water production or including hot water storage. The prototype of the virtual test bench is described emphasizing the hardware-in-the-loop methodologies and embedded control. The particular case study of a tankless gas water heater (TGWH) is presented implementing the different operation modes in the virtual test bench. The water heater models, control strategies, simulation, and experimental data are presented and discussed.

References

1.
Energy Information Administration
,
2017
,
Residential Energy Consumption Survey (RECS) 2015 Technical Documentation Summary
.
2.
Eurostat European Commission
,
2017
,
Energy, Transport and Environment Indicators
, Statistical Office of the European Union.
3.
EU
,
2013
,
Commission Regulation (EU) No. 814/2013 of 2 August 2013 Implementing Directive 2009/125/EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Water Heaters and Hot Water Storage Tanks
.
4.
Yuill
,
D.
,
2008
,
Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater, Office of Scientific and Technical Information (OSTI), Pittsburgh, PA, and Morgantown, WV
.
5.
Costa
,
V.
,
Ferreira
,
J.
, and
Guilherme
,
D.
,
2016
, “
Modeling and Simulation of Tankless Gas Water Heaters to Reduce Temperature Overshoots and Undershoots
,”
Proceedings of the 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2016), HEFAT
,
Málaga, Spain
,
July 11–13
, pp.
1404
1409
.
6.
Laurencio-Molina
,
J. C.
, and
Salazar-Garcia
,
C.
,
2018
, “
Design of an Artificial Neural Network Controller for a Tankless Water Heater By Using a Low-Profile Embedded System
,”
2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)
,
San Carlos, Costa Rica
,
July 18–20
, IEEE, pp.
1
9
.
7.
Xu
,
K.
,
Qiu
,
X.
,
Li
,
X.
, and
Xu
,
Y.
,
2008
, “
A Dynamic Neuro-Fuzzy Controller for Gas-Fired Water Heater
,”
2008 Fourth International Conference on Natural Computation
,
Jinan, China
,
Oct. 18–20
, IEEE, pp.
240
244
.
8.
Bobál
,
V.
,
Kubalčík
,
M.
,
Dostál
,
P.
, and
Novák
,
J.
,
2014
, “
Adaptive Predictive Control of Laboratory Heat Exchanger
,”
WSEAS Trans. Syst.
,
13
, pp.
470
481
.
9.
Haissig
,
C.
, and
Woessner
,
M.
,
2000
, “
An Adaptive Fuzzy Algorithm for Domestic Hot Water Temperature Control of a Combi-Boiler
,”
HVAC&R Res.
,
6
(
2
), pp.
117
134
.
10.
Henze
,
G.
,
Yuill
,
D.
, and
Coward
,
A.
,
2009
, “
Development of a Model Predictive Controller for Tankless Water Heaters
,”
HVAC&R Res.
,
15
(
1
), pp.
3
23
.
11.
Wanjiru
,
E. M.
,
Sichilalu
,
S. M.
, and
Xia
,
X.
,
2017
, “
Model Predictive Control of Heat Pump Water Heater-Instantaneous Shower Powered With Integrated Renewable-Grid Energy Systems
,”
Appl. Energy
,
204
, pp.
1333
1346
.
12.
Rodrigues
,
E. M. G.
,
Godina
,
R.
,
Pouresmaeil
,
E.
,
Ferreira
,
J. R.
, and
Catalão
,
J. P. S.
,
2017
, “
Domestic Appliances Energy Optimization With Model Predictive Control
,”
Energy Convers. Manage.
,
142
, pp.
402
413
.
13.
Lauss
,
G.
,
Majstorovic
,
D.
,
Leimgruber
,
F.
,
Gagrica
,
O.
,
Bründlinger
,
R.
,
Morar
,
I.
,
Miletic
,
Z.
, and
Celanovic
,
N.
,
2017
,
Development of a Controller-Hardware-in-the-Loop (CHIL) Toolbox Applied for Pre-Certification Services for Grid-Connected PV Inverters According to the State-of-the-Art BDEW RL Guideline and FGW TR3 Standard
.
14.
Gurov
,
D.
,
Herber
,
P.
, and
Schaefer
,
I.
,
2020
,”
Automated Verification of Embedded Control Software
BT—Leveraging Applications of Formal Methods, Verification and Validation: Applications,
T.
Margaria
, and
B.
Steffen
, eds.,
Springer International Publishing
,
Cham
, pp.
235
239
.
15.
Jeon
,
C.
,
2015
, “
The Virtual Flier: The Link Trainer, Flight Simulation, and Pilot Identity
,”
Technol. Cult.
,
56
(
1
), pp.
28
53
.
16.
Xue
,
D.
, and
Chen
,
Y.
,
2014
,
System Simulation Techniques With MATLAB and Simulink
,
John Wiley & Sons, Ltd.
,
New York
.
17.
Sporr
,
A.
, and
Lauermann
,
M.
,
2020
, “
Controller-in-the-Loop—New Ways of Optimizing Costs and Quality of Heat Pump Systems
,”
Heat Pump. Technol. Mag.
,
39
(
3
), pp.
22
26
.
18.
Tejeda De La Cruz
,
A.
,
Riviere
,
P.
,
Marchio
,
D.
,
Cauret
,
O.
, and
Milu
,
A.
,
2017
, “
Hardware in the Loop Test Bench Using Modelica: A Platform to Test and Improve the Control of Heating Systems
,”
Appl. Energy
,
188
, pp.
107
120
.
19.
Pugi
,
L.
,
Galardi
,
E.
,
Pallini
,
G.
,
Paolucci
,
L.
, and
Lucchesi
,
N.
,
2016
, “
Design and Testing of a Pulley and Cable Actuator for Large Ball Valves
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
230
(
7
), pp.
622
639
.
20.
Pugi
,
L.
,
Galardi
,
E.
,
Carcasci
,
C.
,
Rindi
,
A.
, and
Lucchesi
,
N.
,
2015
, “
Preliminary Design and Validation of a Real Time Model for Hardware in the Loop Testing of Bypass Valve Actuation System
,”
Energy Convers. Manage.
,
92
, pp.
366
384
.
21.
Iacob
,
M.
, and
Andreescu
,
G.-D.
,
2011
, “
Real-Time Hardware-in-the-Loop Test Platform
,”
2011 IEEE 9th International Symposium on Intelligent Systems and Informatics
,
Subotica, Serbia
,
Sept. 8–10
, IEEE, pp.
495
500
.
22.
Zaev
,
E.
,
Tuneski
,
A.
,
Babunski
,
D.
,
Trajkovski
,
L.
,
Nospal
,
A.
, and
Rath
,
G.
,
2012
, “
Hydro Power Plant Governor Testing Using Hardware-in-the-Loop Simulation
,”
Proceedings of the 2012 Mediterranean Conference on Embedded Computing (MECO 2012)
,
Bar, Montenegro
,
June 19–21
, pp.
271
274
.
23.
Rodrigues
,
R.
,
Murilo
,
A.
,
Lopes
,
R. V.
, and
De Souza
,
L. C. G.
,
2019
, “
Hardware in the Loop Simulation for Model Predictive Control Applied to Satellite Attitude Control
,”
IEEE Access
,
7
, pp.
157401
157416
.
24.
Huber
,
M.
,
Bons
,
C.
, and
Müller
,
D.
,
2014
, “
Exergetic Evaluation of Solar Controller Using Software-in-the-Loop Method
,”
Energy Procedia
,
48
, pp.
850
857
.
25.
El-Baz
,
W.
,
Mayerhofer
,
L.
,
Tzscheutschler
,
P.
, and
Wagner
,
U.
,
2018
, “
Hardware in the Loop Real-Time Simulation for Heating Systems: Model Validation and Dynamics Analysis
,”
Energies
,
11
(
11
), p.
3159
.
26.
El-Baz
,
W.
,
Tzscheutschler
,
P.
, and
Wagner
,
U.
,
2018
, “
Experimental Study and Modeling of Ground-Source Heat Pumps With Combi-Storage in Buildings
,”
Energies
,
11
(
5
), p.
1174
.
27.
Rhee
,
K. N.
,
Yeo
,
M. S.
, and
Kim
,
K. W.
,
2011
, “
Evaluation of the Control Performance of Hydronic Radiant Heating Systems Based on the Emulation Using Hardware-in-the-Loop Simulation
,”
Build. Environ.
,
46
(
10
), pp.
2012
2022
.
28.
Schoberer
,
T.
,
Weyr
,
J.
,
Steindl
,
G.
,
Görtler
,
G.
, and
Stutterecker
,
W.
,
2019
, “
Comparison of the Energy Performance of a Heat Pump Under Various Conditions by Using a Hardware-in-the-Loop (HIL) Test Method
,”
Appl. Mech. Mater.
,
887
, pp.
622
632
.
29.
Nguyen
,
V. H.
,
Nguyen
,
T. L.
,
Tran
,
Q. T.
,
Besanger
,
Y.
, and
Caire
,
R.
,
2020
, “
Integration of SCADA Services and Power-Hardware-in-the-Loop Technique in Cross-Infrastructure Holistic Tests of Cyber-Physical Energy Systems
,”
IEEE Trans. Ind. Appl.
,
56
(
6
), pp.
7099
7108
.
30.
Thornton
,
M.
,
Motalleb
,
M.
,
Smidt
,
H.
,
Branigan
,
J.
,
Siano
,
P.
, and
Ghorbani
,
R.
,
2018
, “
Internet-of-Things Hardware-in-the-Loop Simulation Architecture for Providing Frequency Regulation With Demand Response
,”
IEEE Trans. Ind. Inf.
,
14
(
11
), pp.
5020
5028
.
31.
Tejado
,
I.
,
Serrano
,
J.
,
Pérez
,
E.
,
Torres
,
D.
, and
Vinagre
,
B. M.
,
2016
, “
Low-Cost Hardware-in-the-Loop Testbed of a Mobile Robot to Support Learning in Automatic Control and Robotics
,”
IFAC-PapersOnLine
,
49
(
6
), pp.
242
247
.
32.
Pugi
,
L.
,
Galardi
,
E.
,
Carcasci
,
C.
, and
Lucchesi
,
N.
,
2017
, “
Hardware-in-the-Loop Testing of Bypass Valve Actuation System: Design and Validation of a Simplified Real Time Model
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
231
(
2
), pp.
212
235
.
33.
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Melino
,
F.
,
Ottaviano
,
S.
,
Peretto
,
A.
, and
Torricelli
,
N.
,
2019
, “
Application and Comparison of Semi-Empirical Models for Performance Prediction of a KW-Size Reciprocating Piston Expander
,”
Appl. Energy
,
249
, pp.
143
156
.
34.
D’Adamio
,
P.
,
Galardi
,
E.
,
Meli
,
E.
,
Nocciolini
,
D.
,
Pugi
,
L.
, and
Rindi
,
A.
,
2017
, “
Real-Time Modeling, Control and Optimization of Turbo-Machinery Auxiliary Plants
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
232
(
3
), pp.
244
257
.
35.
Gerard
,
A.
,
Tahir
,
A.
,
Tankari
,
M.
, and
Lefebvre
,
G.
,
2017
,
Modelling Bond Graph of a Thermal Solar Water Heater for Thermal Comfort in a Building
.
36.
Paynter
,
H. M.
,
1961
,
Analysis and Design of Engineering systems: Class Notes for MIT Course 2.751
,
MIT Press
,
Cambridge, MA
.
37.
Karnopp
,
D.
,
Rosenberg
,
R.
, and
Perelson
,
A. S.
,
1976
, “
System Dynamics: A Unified Approach
,”
IEEE Trans. Syst. Man. Cybern.
, SMC-
6
(
10
), p.
724
.
38.
Quintã
,
A. F.
,
Ferreira
,
J. A. F. F.
,
Ramos
,
A.
,
Martins
,
N. A. D. D.
, and
Costa
,
V. A. F. F.
,
2019
, “
Simulation Models for Tankless Gas Water Heaters
,”
Appl. Therm. Eng.
,
148
, pp.
944
952
.
39.
Jin
,
X.
,
Maguire
,
J.
, and
Christensen
,
D.
,
2014
, “
Model Predictive Control of Heat Pump Water Heaters for Energy Efficiency
,”
ACEEE Summer Study on Energy Efficiency in Buildings
,
Pacific Grove, CA
,
Aug. 17–23
.
40.
Ehtiwesh
,
I. A. S.
,
Quintã
,
A. F.
, and
Ferreira
,
J. A. F.
,
2021
, “
Predictive Control Strategies for Optimizing Temperature Stability in Instantaneous Hot Water Systems
,”
Sci. Technol. Built Environ.
,
27
(
5
), pp.
679
690
.
You do not currently have access to this content.