Abstract

The present paper deals with the forced convection and pressure drop of Al2O3/water and TiO2/water nanofluids with the presence of inserts in a circular tube. The constant heat flux is maintained around the copper tube with the help of a nichrome wire heater. Two types of inserts are used: simple and modified spiral tape inserts. The modified spiral tape is consisting of zig-zag cuts having notches (or grooves) and projected parts. The Nusselt number, friction factor, and thermal performance factor are calculated for different cases: (1) tube with distilled water, (2) tube with distilled water and inserts, and (3) tube with nanofluids and inserts. The empirical correlations are developed for all these cases. For Al2O3/water nanofluids, the Nu values decrease with the increase in concentrations, whereas for TiO2/water nanofluids, the Nu values have highest at 0.05% concentration; then, there is a decreasing order with the concentrations of 0.075% and 0.1%. It is observed that modified spiral tape inserts with twist ratios of 3.04 and 4.35 effectively enhance the heat transfer without extra penalty of pumping power.

References

1.
Raj
,
P.
, and
Subudhi
,
S.
,
2018
, “
A Review of Studies Using Nanofluids in Flat-Plate and Direct Absorption Solar Collectors
,”
Renewable Sustainable Energy Rev.
,
84
, p.
54
74
.
2.
Kumar
,
A.
, and
Subudhi
,
S.
,
2019
, “
Preparation, Characterization and Heat Transfer Analysis of Nanofluids Used for Engine Cooling
,”
Appl. Therm. Eng.
,
160
, p.
114092
.
3.
Zeinali Heris
,
S.
,
Nasr Esfahany
,
M.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.
4.
Fotukian
,
S. M.
, and
Nasr Esfahany
,
M.
,
2010
, “
Experimental Investigation of Turbulent Convective Heat Transfer of Dilute γ-Al2O3/Water Nanofluid Inside a Circular Tube
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
606
612
.
5.
Liu
,
D.
, and
Yu
,
L.
,
2011
, “
Single-Phase Thermal Transport of Nanofluids in a Minichannel
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
3
), p.
031009
.
6.
Nazari
,
M.
,
Ashouri
,
M.
,
Kayhani
,
M. H.
, and
Tamayol
,
A.
,
2015
, “
Experimental Study of Convective Heat Transfer of a Nanofluid Through a Pipe Filled With Metal Foam
,”
Int. J. Therm. Sci.
,
88
, pp.
33
39
.
7.
Mandal
,
S.
, and
Ghoshdastidar
,
P. S.
,
2020
, “
Laminar Forced Convection of Nanofluids in a Circular Tube: A New Nonhomogeneous Flow Model
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
2
), p.
022502
.
8.
Choudhary
,
R.
, and
Subudhi
,
S.
,
2016
, “
Aspect Ratio Dependence of Turbulent Natural Convection in Al2O3/Water Nanofluids
,”
Appl. Therm. Eng.
,
108
, pp.
1095
1104
.
9.
Kumar
,
A.
, and
Subudhi
,
S.
,
2018
, “
Preparation, Characteristics, Convection and Applications of Magnetic Nanofluids: A Review
,”
Heat and Mass Transfer
,
54
(
2
), pp.
241
265
.
10.
Sundar
,
L. S.
, and
Sharma
,
K. V.
,
2010
, “
Heat Transfer Enhancements of Low Volume Concentration Al2O3 Nanofluid and With Longitudinal Strip Inserts in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4280
4286
.
11.
Sundar
,
S.
,
Ravi Kumar
,
L.
,
Naik
,
N. T.
,
and Sharma
,
M. T.
, and
V
,
K.
,
2012
, “
Effect of Full Length Twisted Tape Inserts on Heat Transfer and Friction Factor Enhancement with Fe3O4 Magnetic Nanofluid Inside a Plain Tube: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
2761
2768
.
12.
Sundar
,
L. S.
, and
Sharma
,
K. V.
,
2010
, “
Turbulent Heat Transfer and Friction Factor of Al2O3 Nanofluid in Circular Tube With Twisted Tape Inserts
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1409
1416
.
13.
Talesh Bahrami
,
H. R.
,
Aminian
,
E.
, and
Saffari
,
H.
,
2020
, “
Energy Transfer Enhancement Inside an Annulus Using Gradient Porous Ribs and Nanofluids
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122012
.
14.
Sheikholeslami
,
M.
,
Arabkoohsar
,
A.
, and
Jafaryar
,
M.
,
2020
, “
Exhaust Heat Recovery Unit Equipped With Nanofluid and Helical Tapes, a Solution for Cleaner Energy Production
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112111
.
15.
Khurana
,
D.
, and
Subudhi
,
S.
,
2019
, “
Forced Convection of Al2O3/Water Nanofluids With Simple and Modified Spiral Tape Inserts
,”
Heat Mass Transfer
,
55
(
10
), pp.
2831
2843
.
16.
Bas
,
H.
, and
Ozceyhan
,
V.
,
2012
, “
Heat Transfer Enhancement in a Tube With Twisted Tape Inserts Placed Separately From the Tube Wall
,”
Exp. Therm. Fluid Sci.
,
41
, pp.
51
58
.
17.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
18.
Gnielinski
,
V.
,
1975
, “
New Equations for Heat and Mass Transfer in Turbulent Flow Through Pipes and Ducts
,”
Forsch. Ingenieurwes.
,
41
(
1
), pp.
8
16
.
19.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.
20.
Eiamsa-ard
,
S.
,
Thianpong
,
C.
, and
Eiamsa-ard
,
P.
,
2010
, “
Turbulent Heat Transfer Enhancement by Counter/Co-swirling Flow in a Tube Fitted With Twin Twisted Tapes
,”
Exp. Therm. Fluid Sci.
,
34
(
1
), pp.
53
62
.
21.
Murugesan
,
P.
,
Mayilsamy
,
K.
, and
Suresh
,
S.
,
2010
, “
Turbulent Heat Transfer and Pressure Drop in Tube Fitted With Square-Cut Twisted Tape
,”
Chin. J. Chem. Eng.
,
18
(
4
), pp.
609
617
.
22.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
890
896
.
23.
Liebenberg
,
H. C. L.
,
Vyvef
,
H.
, and
Meyera
,
J. P.
,
2003
, “
Angled Spiralling Tape Inserts in a Heat Exchanger Annulus
,”
R&D J.
,
19
(
2
), pp.
1
8
.
You do not currently have access to this content.