Abstract

In the thermal management of spacecraft, space thermal radiators play a vital role as heat sinks. A serial radiator with proven advantages in ground applications is proposed and analyzed for space applications. From the performance analysis, specific heat rejection (SHR) of serial radiator is found to be higher than parallel radiator by 80% for maximum diameter of the tube, 47% for maximum thickness of the fin, and 75% for maximum pitch of the tubes under consideration. Also, serial radiator requires four times higher pumping power than parallel radiator with geometric parameters and a maximum mass flowrate under consideration. In serial radiators, the cross conduction between the fins has a significant effect on its thermal performance. Thus, conjugate heat transfer simulations and optimization operations are to be performed iteratively to optimize the serial radiator, which is computationally costly. To reduce the computational time, artificial neural network (ANN) is trained using conjugate heat transfer simulations data and combined with the genetic algorithm (GA) to perform optimization. Taguchi’s orthogonal arrays provided the partial fraction of conjugate heat transfer simulations set to train the ANN. Taguchi-Neuro-Genetic approach, a process that combines the features of three powerful techniques in different optimization phases, is used to optimize both parallel and serial radiators. The optimization aims to obtain a configuration that provides the lowest mass and lowest pumping power requirement for given heat rejection. Optimization results show that the conventional parallel radiator is about 20% heavier and requires about 35% more pumping power than the proposed serial radiator.

References

1.
Naumann
,
R. J.
,
2004
, “
Optimizing the Design of Space Radiators
,”
Int. J. Thermophys.
,
25
(
6
), pp.
1929
1941
.
2.
Afshari
,
B. M.
,
Abedi
,
M.
, and
Shahryari
,
M.
,
2017
, “
Optimization of a Radiator for a MPFL System in a GEO Satellite
,”
Adv. Aircr. Spacecr. Sci.
,
4
(
6
), pp.
701
709
.
3.
Salem
,
T. K.
,
Nazzal
,
I. T.
,
Arik
,
M.
, and
Budakli
,
M.
,
2019
, “
Impact of Functional Nanofluid Coolant on Radiator Performance
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041020
.
4.
Võsa
,
K.-V.
,
Ferrantelli
,
A.
,
Kull
,
T. M.
, and
Kurnitski
,
J.
,
2018
, “
Experimental Analysis of Emission Efficiency of Parallel and Serial Connected Radiators in EN442 Test Chamber
,”
Appl. Therm. Eng.
,
132
, pp.
531
544
.
5.
Kumar Rai
,
P.
,
Rao Chikkala
,
S.
,
Adoni
,
A. A.
, and
Kumar
,
D.
,
2015
, “
Space Radiator Optimization for Single-Phase Mechanical Pumped Fluid Loop
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041021
.
6.
Deka
,
A.
, and
Datta
,
D.
,
2017
, “
Geometric Size Optimization of Annular Step Fin Using Multi-Objective Genetic Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021013
.
7.
Selleri
,
T.
,
Najafi
,
B.
,
Rinaldi
,
F.
, and
Colombo
,
G.
,
2013
, “
Mathematical Modeling and Multi-Objective Optimization of a Mini-Channel Heat Exchanger Via Genetic Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
031013
.
8.
Dias
,
T.
, and
Milanez
,
L. F.
,
2006
, “
Optimal Location of Heat Sources on a Vertical Wall With Natural Convection Through Genetic Algorithms
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2090
2096
.
9.
da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Optimal Distribution of Discrete Heat Sources on a Wall With Natural Convection
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
203
214
.
10.
Leong
,
C. H.
,
Azid
,
I. A.
, and
Seetharamu
,
K. N.
,
2002
, “
Thermal Performance Prediction of Plastics Ball Grid Array (PBGA) Using Artificial Neural Network
,”
ASEAN J. Sci. Technol. Develop.
,
19
(
1
), pp.
29
38
.
11.
Asok
,
S. P.
,
Sankaranarayanasamy
,
K.
,
Sundararajan
,
T.
,
Rajesh
,
K.
, and
Sankar Ganeshan
,
G.
,
2007
, “
Neural Network and CFD Based Optimization of Square Cavity and Curved Cavity Static Labyrinth Seals
,”
Tribol. Int.
,
40
(
7
), pp.
1204
1216
.
12.
Khan
,
T. A.
, and
Li
,
W.
,
2018
, “
Optimal Configuration of Vortex Generator for Heat Transfer Enhancement in a Plate-Fin Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021013
.
13.
Madadi
,
R. R.
, and
Balaji
,
C.
,
2008
, “
Optimization of the Location of Multiple Discrete Heat Sources in a Ventilated Cavity Using Artificial Neural Networks and Micro Genetic Algorithm
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2299
2312
.
14.
Lee
,
H. W.
,
Teng
,
Y. J.
,
Azid
,
I. A.
, and
Seetharamu
,
K. N.
,
2007
, “
Neuro-Genetic Optimization of Micro Compact Heat Exchanger
,”
Int. J. Numer. Methods Heat Fluid Flow
,
17
(
1
), pp.
20
33
.
15.
Jaya Krishna
,
D.
,
2018
, “
Operational Time and Melt Fraction Based Optimization of a Phase Change Material Longitudinal Fin Heat Sink
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
064502
.
16.
Aly
,
W. I. A.
,
2014
, “
Computational Fluid Dynamics and Optimization of Flow and Heat Transfer in Coiled Tube-in-Tube Heat Exchangers Under Turbulent Flow Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
3
), p.
031001
.
17.
Wang
,
H.
,
Liu
,
Y.
,
Yang
,
P.
,
Wu
,
R.
, and
He
,
Y.
,
2006
, “
Parametric Study and Optimization of H-Type Finned Tube Heat Exchangers Using Taguchi Method
,”
Appl. Therm. Eng.
,
103
, pp.
128
138
.
18.
Sahin
,
B.
,
2007
, “
Taguchi Approach for Determination of Optimum Design Parameters for a Heat Exchanger Having Circular Cross-Sectional Pin Fins
,”
Heat Mass Transfer
,
43
, pp.
493
502
.
19.
Altan
,
M.
,
2010
, “
Reducing Shrinkage in Injection Moldings via the Taguchi, ANOVA and Neural Network Methods
,”
Mater. Des.
,
31
(
1
), pp.
599
604
.
20.
ASM International
,
1992
,
ASM Handbook. Nonferrous Alloys and Special-Purpose Materials Volume 2, Metals Handbook
,
ASM International
,
Materials Park, OH
.
21.
3M Novec 7100 Engineered Fluid Product Information
,
2009
, St. Paul, MN, https://multimedia.3m.com/mws/media/199818O/3m-novec-7100-engineered-fluid.pdf
22.
Gilmore
,
D.
,
2002
,
Spacecraft Thermal Control Handbook, Volume 1: Fundamental Technologies
,
American Institute of Aeronautics and Astronautics
,
Washington, DC
. 10.2514/4.989117
23.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals & Applications
, 2nd ed.,
McGraw-Hill
,
New York
.
24.
Tube Bend Radii
,”
SAE AS33611, 2015, G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies. 10.4271/AS33611
.
You do not currently have access to this content.