Abstract

The present work reports a 3D computational study of buoyancy-driven flow and heat transfer characteristics for a localized heater (analogous to superconductor) submerged in cryogenic liquid nitrogen in an enclosure. Seven different heater geometries are considered and the effect of heater geometry on flow and heat transfer characteristics is illustrated. The heater is generating heat at a constant rate (W/m3). Continuity, momentum, and energy equations are solved using the finite volume method. Liquid flow and heat transfer features are demonstrated with the help of velocity vector and temperature contours. Rayleigh number, average Nusselt number, the maximum vertical velocity of fluid flow, and the average velocity of fluid flow are the parameters that are considered for comparing seven different geometries of the heater. Additionally, an analysis of the entropy generation owing to the transfer of heat and friction due to fluid flow is reported. Furthermore, the dependency of average Nusselt number, maximum velocity of the fluid, entropy generation owing to transfer of heat, and fluid friction as a function of heat generation rate is illustrated graphically. The results of this study indicate that heater geometry can considerably affect the transfer of heat, fluid flow features, and entropy generation under the same heat generation rate in the heater. The highest average Nusselt number on the heater surface is obtained when heater geometry is circular, whereas the lowest value of total entropy generation in the domain is obtained when heater geometry is an equilateral triangle.

References

1.
Durrell
,
J. H.
,
Dennis
,
A. R.
,
Jaroszynski
,
J.
,
Ainslie
,
M. D.
,
Palmer
,
K. G. B.
,
Shi
,
Y.-H.
,
Campbell
,
A. M.
, et al
,
2014
, “
A Trapped Field of 17.6 T in Melt-Processed, Bulk Gd-Ba-Cu-O Reinforced With Shrink-Fit Steel
,”
Supercond. Sci. Technol.
,
27
(
8
), pp.
1
5
.
2.
Ha
,
M. Y.
,
Jung
,
M. J.
, and
Kim
,
Y. S.
,
1999
, “
Numerical Study on Transient Heat Transfer and Fluid Flow of Natural Convection in an Enclosure With a Heat-Generating Conducting Body
,”
Numer. Heat Transfer, Part A
,
35
(
4
), pp.
415
433
.
3.
Sarris
,
I. E.
,
Lekakis
,
I.
, and
Vlachos
,
N. S.
,
2004
, “
Natural Convection in Rectangular Tanks Heated Locally From Below
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3549
3563
.
4.
Koizumi
,
H.
,
2007
, “
Flow Pattern Formation and the Transition to Chaos in a Confined Container Heated Locally From Below
,”
Int. J. Thermal Sci.
,
46
(
10
), pp.
953
962
.
5.
Oliveski
,
R. D. C.
,
Macagnan
,
M. H.
, and
Copetti
,
J. B.
,
2009
, “
Entropy Generation and Natural Convection in Rectangular Cavities
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1417
1425
.
6.
Basak
,
T.
,
Anandalakshmi
,
R.
, and
Gunda
,
P.
,
2012
, “
Role of Entropy Generation During Convective Thermal Processing in Right-Angled Triangular Enclosures With Various Wall Heatings
,”
Chem. Eng. Res. Des.
,
90
(
11
), pp.
1779
1799
.
7.
Kamiyo
,
O. M.
,
Angeli
,
D.
,
Barozzi
,
G. S.
,
Collins
,
M. W.
,
Olunloyo
,
V. O. S.
, and
Talabi
,
S. O.
,
2010
, “
A Comprehensive Review of Natural Convection in Triangular Enclosures
,”
ASME Appl. Mech. Rev.
,
63
(
6
), p.
060801
.
8.
Cianfrini
,
C.
,
Corcione
,
M.
,
Habib
,
E.
, and
Quintino
,
A.
,
2013
, “
Convective Transport of Rectangular Cavities Partially Heated at the Bottom and Cooled at One Side
,”
J. Therm. Sci.
,
22
(
1
), pp.
55
63
.
9.
Öztop
,
H. F.
,
Estellé
,
P.
,
Yan
,
W. M.
,
Al-Salem
,
K.
,
Orfi
,
J.
, and
Mahian
,
O.
,
2014
, “
A Brief Review of Natural Convection in Enclosures Under Localized Heating With and Without Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
60
(
1
), pp.
1
8
.
10.
Ngo
,
I. L.
, and
Byon
,
C.
,
2015
, “
Effects of Heater Location and Heater Size on the Natural Convection Heat Transfer in a Square Cavity Using Finite Element Method
,”
J. Mech. Sci. Tech.
,
29
(
7
), pp.
2995
3003
.
11.
Dubois
,
C.
,
Duchesne
,
A.
,
Vanderheyden
,
B.
,
Vanderbemden
,
P.
, and
Caps
,
H.
,
2016
, “
Locally Induced Laminar Convection in Liquid Nitrogen and Silicone Oils
,”
Eur. Phys. J. E. Soft Matter
,
39
(
8
), pp.
1
8
.
12.
Satpathy
,
K.
,
Duchesne
,
A.
,
Dubois
,
C.
,
Fagnard
,
J.-F.
,
Caps
,
H.
,
Vanderbemden
,
P.
, and
Vanderheyden
,
B.
,
2017
, “
Studies on Convective Cooling of Cryogenic Fluids Towards Superconducting Applications
,”
WIT Trans. Eng. Sci.
,
118
(
18
), pp.
95
106
.
13.
Das
,
D.
,
Roy
,
M.
, and
Basak
,
T.
,
2017
, “
Studies on Natural Convection Within Enclosures of Various (Non-Square) Shapes—A Review
,”
Int. J. Heat Mass Transfer
,
106
, pp.
356
406
.
14.
Satpathy
,
K.
,
Duchesne
,
A.
,
Dubois
,
C.
,
Fagnard
,
J.-F.
,
Caps
,
H.
,
Vanderbemden
,
P.
, and
Vanderheyden
,
B.
,
2018
, “
Study of Buoyancy-Driven Heat Transport in Silicone Oils and in Liquid Nitrogen in View of Cooling Applications
,”
Int. J. Heat Mass Transfer
,
118
(
1
), pp.
538
550
.
15.
Ade
,
S. S.
, and
Rathore
,
S. K.
,
2020
, “
3D Computational Study
on Buoyancy Driven Flow and Heat Transfer Characteristics in Cryogenic Liquid Nitrogen
,”
Proceedings of the International Conference of 65th Congress of the Indian Society for Theoretical and Applied Mechanics (ISTAM 2020)
,
Hyderabad, India
,
Dec. 9−11
, PID 32.
16.
Ade
,
S. S.
, and
Rathore
,
S. K.
,
2021
, “
A Comparative Study of Effect of Heater Orientation on Flow and Heat Transfer Characteristics in Buoyancy-Driven Flow in Cryogenic Liquid
,”
IOP Conf. Ser.: Mater. Sci. and Eng.
,
1146
(
1
), p.
012001
.
17.
Boussinesq
,
J.
,
1903
,
Théorie Analytique de la Chaleur
, Vol.
II
,
Gauthier-Villars
,
Paris
.
18.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
19.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
20.
Fluent
,
2013
,
ANSYS Fluent User’s Guide 15.0
,
User Manual of Ansys Inc.
,
Canonsburg, PA
.
You do not currently have access to this content.