Abstract

The paper industry uses rotating cylinder dryers that employ steam to heat the paper web moving over the cylinder outer walls. As steam condenses, the condensate is accumulated inside the dryers and evacuated using siphons. The form of condensate motion occurring inside a rotating dryer consists of three modes: puddling, cascading, or rimming. To help improve the drying performance, it is important to understand the fundamental thermal-fluid physics in the rotational dryer. Thus, the objectives of this study are to (a) investigate the dynamic two-phase flow and heat transfer behavior inside the rotational dryer at different rotational speeds; (b) employ three different multiphase computational models, the Volume of Fluid (VOF) model, the Mixture model, and the Eulerian–Eulerian (E–E) model; and compare their results. The results show that the E–E model better captures the physics of condensate behavior inside the dryer. It also predicts very well the rimming speed in comparison with the empirical correlation although it takes longer computational time than the VOF model. The mixture model does not adequately capture the cascade and rimming physics due to excessive liquid dispersion. Based on the results, the categorization of the thermal-flow behavior of the liquid layer is expanded from the traditional three phases to five phases: puddling, transitional cascading, cascading, transitional rimming, and steady rimming. Generally, the heat transfer increases during the initial puddling period, followed by oscillatory attenuation during the cascade period, and finally reaches the steady-state after rimming is achieved.

References

1.
Karlson
,
M.
,
2000
,
Papermaking Part 2-Drying
,
Fapet Oy
,
Helsinki
.
2.
White
,
R. E.
,
1956
, “
Residual Condensate, Condensate Behavior, and Siphoning in Paper Driers
,”
Tappi J.
,
39
(
4
), pp.
228
233
.
3.
Nimmo
,
B. G.
, and
Ayers
,
J. F.
,
1973
, “
Thickness Variation of Rimming Film Inside Horizontal Rotating Cylinder
,”
Ind. Eng. Chem. Process Des. Dev.
,
12
(
2
), pp.
211
213
.
4.
Calkins
,
D. L.
,
1966
, “
The Effects of Siphon Location on Paper Drying
,”
Pulp and Paper Magazine of Canada
, pp.
T-225
240
.
5.
Simmons
,
A. T.
,
1966
,
Svensk Papperstid
,
69
(
23
), p.
813
.
6.
Roetzel
,
W.
,
1975
, “
Improving Heat Transfer in Steam-Heated Fast Rotating Paper Drying Drums
,”
J. Heat Mass Transfer
,
18
(
1
), pp.
79
86
.
7.
Wedel
,
G. L.
,
1983
, “
Performance of Dryer Siphons
,”
Tappi J.
,
66
(
7
), pp.
90
93
.
8.
Pereira
,
M.
,
Valenzuela
,
R. C.
, and
Valenzuela
,
M. A.
,
2009
, “
Experimental Evaluation and Modeling of Condensate Effects in Dryer Cylinders
,”
Conference Record of 2009 Annual Pulp and Paper Industry Technical Conference
,
Birmingham, AL
.
9.
Concannon
,
M. D.
,
1980
, “
Condensate Effects on Torque and Horsepower in Paper Dryers
,”
Tappi J.
,
63
(
9
), pp.
69
72
.
10.
Pulkowski
,
J.
, and
Wedel
,
G.
,
1988
, “
The Effect of Spoiler Bars on Dryer Heat Transfer
,”
Pulp and Paper Canada
,
89
(
8
), pp.
61
66
.
11.
Reese
,
J.
,
Chaloux
,
J.
,
Kormano
,
P.
,
Reese
,
D.
, and
Wedel
,
G.
,
2016
, “
Application of Dryer Bars
,” TIP 0404-35, TAPPI.
12.
Appel
,
D. W.
, and
Hong
,
S. H.
,
1973
, “
Rotary Drying Drum
,” U.S. Patent No. 3,724,094.
13.
Appel
,
D. W.
, and
Hong
,
S. H.
,
1975
, “
Optimizing Heat Transfer Using Bars in Dryers
,”
Pap. Technol. Ind.
,
16
(
6
), p.
264
.
14.
Wedel
,
G. L.
, and
Timm
,
G. L.
,
2002
, “
Drive Power and Torque in Paper Machine Dryers
,”
TAPPI Engineering Conference Proceedings
,
TAPPI Press
.
15.
Deiber
,
J. A.
, and
Cerro
,
R. L.
,
1976
, “
Viscous Flow with a Free Surface Inside a Horizontal Rotating Drum. I. Hydrodynamics
,”
Ind. Eng. Chem. Fundam.
,
15
(
2
), pp.
102
110
.
16.
Ruschak
,
K. J.
, and
Scriven
,
L. E.
,
1976
, “
Rimming Flow of Liquid in a Rotating Horizontal Cylinder
,”
J. Fluid Mech.
,
76
(
1
), pp.
113
125
.
17.
Ruschak
,
K. J.
,
1985
, “
Coating Flows
,”
Annu. Rev. Fluid Mech.
,
17
(
1
), pp.
65
89
.
18.
Malkin
,
B. A.
,
1937a
, “
The Behaviour of Condensate in Paper Machine Dryers
,”
Dominion Eng.
,
4
(
4
), p.
8
.
19.
Malkin
,
B. A.
,
1937b
, “
“The Behaviour of Condensate in Paper Machine Dryers,” The Dominion Engineer (Dominion Engineering Co. Ltd.
,”
Montreal
,
4
(
5
), p.
8
.
20.
White
,
R. E.
, and
Higgins
,
T. W.
,
1958
, “
Effect of Fluid Properties on Condensate Behaviour
,”
TAPPI J.
,
41
(
2
), pp.
71
77
.
21.
Yih
,
C. S.
,
Kingman
,
J. F. C.
, and
Ingram
,
T. G.
,
1960
, “
Instability of a Rotating Liquid Film With a Free Surface
,”
Proc. R. Soc. A
,
258
(
1292
), pp.
63
89
.
22.
Orr
,
E. M.
, and
Scriven
,
L. E.
,
1978
, “
Rimming Flow: Numerical Simulation of Steady, Viscous, Free- Surface Flow With Surface Tension
,”
Fluid Mech.
,
84
(
1
), pp.
145
165
.
23.
Wilhelmsson
,
B. I.
,
McKibben
,
J. F.
,
Strenstrom
,
S. G.
, and
Aidun
,
C. K.
,
1995
, “
Condensate Flow Inside Paper Dryer Cylinders
,”
J. Pulp Pap. Sci.
,
21
(
1
), pp.
J1
J9
.
24.
Aus der Wiesche
,
S.
,
2008
, “
Sloshing Dynamics of a Viscous Liquid in a Spinning Horizontal Cylindrical Tank
,”
Aerosp. Sci. Technol.
,
12
(
6
), pp.
448
456
.
25.
Aus der Wiesche
,
S.
,
2003
, “
Computational Slosh Dynamics: Theory and Industrial Application
,”
Comput. Mech.
,
30
(
5–6
), pp.
374
387
.
26.
Dawedeit
,
C.
,
Walton
,
C. C.
,
Chernov
,
A. A.
,
Kim
,
S. H.
,
Worsley
,
M. A.
,
Braun
,
T.
,
Gammon
,
S. A.
,
Satcher
,
J. H.
,
Wu
,
K. J.
,
Hamza
,
A. V.
, and
Biener
,
J.
,
2012
, “
Coating Functional Sol–Gel Films Inside Horizontally-Rotating Cylinders by Rimming Flow/State
,”
J. Sol-Gel Sci. Technol.
,
65
(
2
), pp.
170
177
.
27.
Melo
,
F.
,
1993
, “
Localized States in a Film-Dragging Experiment
,”
Phys. Rev. E
,
48
(
4
), pp.
2704
2712
.
28.
Becker
,
A.
, and
Aus der Wiesche
,
S.
,
2013
, “
Experimental Study of Rimming Flows of Two Liquids in a Partially Filled Horizontally Rotating Cylinder
,”
ASME 2013 Fluids Engineering Division Summer Meeting
,
Incline Village, NV
,
July 7–11
.
29.
Tuovinen
,
T.
,
Jeronen
,
J.
, and
Becker
,
P.
,
2017
, “
Simulation of Sloshing of Condensate Water Inside a Drying Cylinder Using Particle Finite Element Method, Advances in Pulp and Paper Research
,”
Proceedings of the 16th Fundamental Research Symposium
,
Oxford, UK
,
Sept. 3–8
, pp.
383
407
.
30.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundary
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
31.
Morton
,
K. W.
, and
Baines
,
M. J.
,
1994
,
Numerical Methods for Fluid Dynamics
,
Oxford University Press
,
Oxford, UK
.
32.
Ubbink
,
O.
,
1997
, “
Numerical Prediction of Two Fluid Systems With Sharp Interfaces
,”
Ph.D. thesis
,
Imperial College of Science, Technology and Medicine
,
London, England
.
33.
Walters
,
D. K.
, and
Wolgemuth
,
N. M.
,
2009
, “
A New Interface-Capturing Discretization for Numerical Solution of the Volume Fraction Equation in Two-Phase Flows
,”
Int. J. Numer. Methods Fluids
,
60
(
8
), pp.
893
918
.
34.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
35.
Hibiki
,
T.
, and
Ishii
,
M.
,
2000
, “
One-Group Interfacial Area Transport of Bubbly Flows in Vertical Round Tubes
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2711
2726
.
36.
Wu
,
Q.
,
Kim
,
S.
,
Ishii
,
M.
, and
Beus
,
S. G.
,
1998
, “
One-Group Interfacial Area Transport in Vertical Bubbly Flow
,”
Int. J. Heat Mass Transfer
,
41
(
8–9
), pp.
1103
1112
.
37.
Fluent R 19.0,
2018
, Theory Guide, ANSYS, Inc.
38.
Schiller
,
L.
, and
Naumann
,
A.
,
1933
, “
Über die Grundlegenden Berechungen bei der Schwerkraftbereitung
,”
Z. Ver. Deutsch, Ing.
,
77
(
12
), pp.
318
320
.
39.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
40.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
1978
, “
Bubbles, Drops, and Particles
,” Technical Report,
Academic Press
.
41.
Takamasa
,
T.
, and
Tomiyama
,
A.
,
1999
, “
Three-Dimensional Gas-Liquid Two-Phase Bubbly Flow in a C-Shaped Tube
,”
Proceedings of the 9th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9)
,
San Francisco, CA
,
Oct. 3–8
.
42.
Ishii
,
M.
,
1979
, “
Two-Fluid Model for two-Phase Flow
,”
Multiph. Sci. Technol.
,
5
(
1–4
), pp.
1
63
.
43.
Kolev
,
N. I.
,
2005
,
Multiphase Flow Dynamics 2: Thermal and Mechanical Interactions
, 2nd ed.,
Springer
,
Berlin, Germany
.
44.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Vaporation From Drops, Part I
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
45.
Tomiyama
,
A.
,
1998
, “
Struggle With Computational Bubble Dynamics
,”
Multiph. Sci. Technol.
,
10
(
4
), pp.
369
405
.
46.
Hughmark
,
G. A.
,
1967
, “
Mass and Heat Transfer From Rigid Spheres
,”
AIChE J.
,
13
(
6
), pp.
1219
1221
.
47.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
467
476
.
48.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, 1st ed.,
CRC Press
,
Washington, DC
.
You do not currently have access to this content.